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CHAPTER I

INTRODUCTION

This paper considers some of the implications of the assumption
that items in a list mutually affect each other in the course of verbal
list-learning. By a mutual affect or item interaction (or item dependency)
is meant that performance on a particular S-R pair in a list depends in
some way on the number and order of presentations of other S-R pairs in
the list. It is hardly necessary to document the fact that items do
interact in this sense; other things being equal, more errors are made to
a particular S-R pair the larger the number of other ©S-R pairs in
the list. Of course, these item interactions may be of a mild and uni-
form sort, such as might be produced by the subject's spreading his effort
over M items, rather than just one; or the interactions might be more
extreme and non-uniform, such as those postulated by a concept-identifi-
cation model (cf. Restle, 1961). We open the analysis by drawing some
conclusions from a brief review of the history of mathematical learning
models for verbal list-learning.

Probably the simplest mathematical model for verbal list-learning
18 the one-element pattern model (Estes, 1959). This model was first
anulyzed in depth and applied to pailred-assoclate learning data by Bower
(1960, 1961). Since its introduction, the one-element model has received
a number of diverse interpretations; among these are the following: (1) a
stimulus pattern interpretation (Estes, 1959), (2) an all-or-none strategy-
selection (hypothesis) interpretation (Restle, 1961, 1964), (3) a memory

interpretation (Atkinson, Bower, aand Crothers, 1965, pp. 87-88), and



(4) a response-elimination interpretation (Millward, 1964). Although the
model has been successful in accounting for some list-learning data, a
number of deficiencies in the model have been pointed out. Some of these
are as follows: (1) the model fails to account for individual differences
and unequal item difficulty (Postman, 1963), (2) learning may involve more
than one stage (Restle, 1964), and (3) improvement in performance may

take place prior to the last error (Suppes and Ginsberg, 1963).

Despite the ups and downs of the one-element model and its many
modifications and extensions, the basic research strategy depicted in
Bower (1961) has had a great influence on later invention and application
of models to paired-associate data. This strategy has been first to
state a (new) mathematical model for paired-associate learning (usually
some finite-state Markov model), derive a battery of statistics from this
model, estimate parameters in the model, and then attempt to account for
summary statistiecs of the pool of subject-item error-success sequences
obtained in a list-learning experiment (usually run by the anticipation
procedure) designed to validate the model. Among the many research paperc
exhibiting this four-step strategy are Atkinson and Crothers (1964),

Bower (1961), Bower and Theois (1964), Calfee and Atkinson (1965), Mill-
ward (1964), Norman (196L), Polson, Restle, and Polson (1965), and
Restle (196L4).

A few of the models presented in these references have psychologicél

rationals which assume that the learning of a particular ©S-R pair pro-

cedes independently of the states and responses of other items in the 1list

E/ Suppose a subject learns a list of M items by the anticipation pro-
cedure. Then that subject contributes M error-success subsequences,
one for each item, to the pool of subject-item error-success sequences.
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(e.g., the one-element model (Bower, 1961) and the random-trial increments
model (Norman, 1964)). For these models it seems reasonable to study
separate error-success sequences for each subject-item, since the model
assumes that each of these sequences represents an independent sample

path from the stochastic process represented in the model. However, for

s number of other models, this independence of subject-item error-success
sequences 1s placed in immediate question by the psychological theory
postulated to underlie the model which is applied to these sequences.

For example, the trial-differential-forgetting (T.D.F.) model suggested

by Atkinson and Crothers (1964) and developed in Calfee and Atkinson (1965)
postulates that the more intervening unlearned items between two successive
presentations of a particular S-R pair, the greater the chance that the
pair passes out of the short-term memory state and is thus forgotten.

This assumption very definitely implies that, for a particular subject,
error-success protocols for each item are not independent. Also, the
strategy-selection theory of Restle (1964) implies that confusable items
produce very non-lindependent error-success protocols, i.e., if S-Rl

and S’-R2 are two such S-R pairs, the error-success process on each
should be related, since subjects may confuse S and S'.

At best, an application of these models to a pool of error-success
protocols which lack a stimulus tag or a subject tag represents an approx-
imation to the true state of affairs. When applying the T.D.F. model to
data (Calfee and Atkinson, 1965), it is assumed that the average number
of unlearned items, Fn, intervening between the nth and n+lSt presenta-
tions of a given item applies to all items in a list. Under this ap-

proximation, the theory takes the form of a finite-state inhomogeneous




Markov chain. This chain is designed to account for the error-success
protocols for each subject-item in the experiment. The approximation
that Restle uses to account for subject-item protocols is discussed in
detail in Chapter 5, pp.108-117 of this paper. Basically, he neglects
the interrelationships between a pair of confusable items in his appli=-
cations.

The major psychological ideas in these latter two theories are as
follows: (l) the T.D.F. model is based on the idea that unlearned items,
when they are presented, cause items in short-term memory to be bumped
into a forgotten state; and (2) the strategy-selection theory is based
on the idea that stimulus confusion (S-Rl, S'-RE) is overcome in an
sll-or-none manner. In both cases we have seen that in order to apply
the theory to a pool of subject-item error-success Sequences in an anti-
cipation procedure experiment, the major new variable in the theory is
represented as an "average" quantity. However, by their nature, both
the memory assumption and the confusion assumption imply highly differen-
tial effects on response probability to a particular S-R pair as a
function of the number and order of other preceding S-R pairs. The
implications of these two assumptions can be powerfully tested by either
designing an experiment where ©S-R presentations are highly controlled
or by utilizing statistics in the data that relate performance on sepa=~
rate items (or both possibilities together). Experiments and analyses
of this nature have been performed on the memory assumption (Bjork, un-
published doctoral dissertation; Greeno, 1966 ; and Atkinson and Shiffrin,
1965) and on the stimulus confusion assumption (Restle, 1964, pp. 145-160;

Ruskin, unpublished doctoral dissertation; and Sheppard, Hoveland, and
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Jenkins, 1961). Finally, it should be mentioned that although the T.D.F.
model and strategy-selection theory were singled out as being convenient
examples of approaches to item dependencies, other models have also
attempted to handle this problem.

This paper considers both the mode of data analysis and the method
of S-R presentation for a number of restricted theoretical assumptions
involving item interactions in S-R list-learning experiments. Chapter 2
considers the problem of level of data analysis, i.e., the problem of how
to use data in a list-learning experiment to bear on a psychological
theory or to evaluate a model. By this concept is meant the following:
each subject in a list-learning experiment can be conceptualized as emit-
ting a single finite data sequence. A particular member, X, of this
sequence consists of the stimulus presented to the subject on the nth

trial, Sn, and his response to that stimulus, An. Thus, for a given

subject i, +the data are of the form

Xi = XiXi Xi Xl
— l 2 L B n o 00 N.
(1.1)
i1 i1 i.i i,i
= S7AT S;A; ... S A ... SpAp,

where N §S-R presentations are given to subject 1 in the experiment.
In order to analyze data in a list-learning experiment, researchers trans-
form this primary datum in ways to extract what they regard as its infor-
mative aspects. TFor example, for a subject-item error-success analysis,
the primary datum is separated into subsequences, one for each item, and
then the SA terms in these shorter sequences are transcribed as errors
or successes. The particular way in which the primary datum is reduced

represents the level of analysis.




More specifically, by level of data analysis is meant the collection

of stimulus classes that define the error-success subsequences used in an
analysis. With each class there is associated a single error-success
sequence consisting of the chronological record of responses to members
of the class. The subject-item analysis or paired-associate level (P-
level) analysis consists of singleton stimulus classes, i.e., one for
each item. On the other hand, a concept-level analysis (Atkinson, Bower,
and Crothers, 1965, pp. 30-31) groups all stimuli in a list to define a
single stimulus class giving rise to one error-success protocol for each
subject. The units of a given level are the particular stimulus classes,
e.g., for a P-level analysis, the units are the individual items. An-
other level of analysis discussed in Chapter 2 is as follows. Suppose a
list of J*M S-R pairs is composed of J classes of M S-R pairs,
where the items in any class of M items are interrelated and paired
with the same response. The rule level (R-level) of analysis is de-
fined to be the analysis where each group of M stimuli forms a stimulus
class which defines a single error-success sequence for the class. Thus
each subject would donate J error-success sequences for an R-level
analysis. The units for this analysis would be the J classes of stim-
uli. Chapter 2 discusses methods of drawing inferences from a model (or
psychological theory) by investigating alternative levels of analysis on
the same set of data.

Chapter 3 extends Chapter 2 in the following sense: while much of
Chapter 2 concerns the one-element model, Chapter 3 presents a model
which is analogous but which allows subjects to learn either a particular

S-R pair or a collection of related S-R pairs on a particular trial.
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This model is called the all-or-none multi-level model, since 1t assumes

that learning can take place at two levels simultaneously. These two
levels are the P-level, corresponding to a P-level data analysis,
and the R-level, corresponding to an R-level data analysis. Alter-
natives to the paired-associate anticipation procedure (i.e., the pro-
cedure whereby random permutations of the entire list are presented
sequentially) are introduced, and some of the implications of the all-or-
none multi-level model for these experimental procedures are presented.
The models discussed in Chapters 2 and 3 are not designed to represent
a theory of paired-associate learning but to indicate how inferences can
be made by considering a fixed model on various levels of data analysis
and in various experimental settings.

Chapter L4 establishes a mathematically rigorous basis for analyzing
a large class of models which embody item dependencies. In this formula-
tion, each item is allowed to have a different effect on the states of
21l the items in the l1ist when it is presented for an anticipation trial;
and, further, the state of each unpresented item in the list can effect
the response probabilities and transition probabilities of the presented
item. Among the motivations for developing this general mathematical
framework are the following:

(1) The analysis of the all-or-none multi-level model in Chapter 3

is limited, owing to the difficulty in deriving properties of the

model from the axiomatization presented in that chapter. The formu-

lation of the all-or-none multi-level model in Chapter 5 is along

the lines that models are conventionally axiomatized in the litera-

ture (cf. Atkinson, Bower, and Crothers, 1965, p. 85 and p. 353);




namely, a particular item 1is singled out and the various things
which the model postulates can happen to that item are presented.
At the outset of Chapter 4, the argument is made that when a model
postulates item interactions, it might be more profitably analyzed
in the context of a set of axioms that describe the things that

can happen to the whole list of S-R Dpairs upon a presentation of
a particular item. The chapter then develops this analysis and
demonstrates that it helps overcome analytical difficulties that
were inherent in the single-item axiomatization.

(2) An increasing number of mathematical models for list learning
are embodying processes which involve item dependencies. Therefore,
such models might profit from an analysis in terms of a framework
designed to handle these dependencies. The argument for this case
is presented in more detail in Chapter 4, pp. 49-53,

(3) Many experimenters have argued that most current list-learning
experiments involve processes which concern interrelationships be-
tween items during the course of learning. Investigators have
discovered a variety of psychological processes which operate, in
varying degree, in such experiments. Most notable are the following
processes: (1) memory and its organization (ef. Peterson, 1963
Melton, 1963), (11) coding processes (cf. Symposium on coding and
conceptual processes in verbal learning, articles by Battlg, Cohen,
Cofer, Tulving, Kendler, Shepard, 1966), and (iii) in second-lan-
guage learning, dependencies arising either because of transfer
from English or because of linguistic dependencies that are bullt

into the second language (Crothers and Suppes, in press). The for-




|
|
f mulation in Chapter L4 is designed to handle models which postulate
processes like these and others which are similar.

(4) Traditionally, mathematical learning models have not been
stated on levels that are general enough to constitute theorles of
paired-assoclate learning. By this 1s meant that many of the learn-
ing models are deslgned to predict performance only for a particular

- experimental procedure and level of data analysis. A model forma-

" 1ized in the framework of Chapter 4 can, in prineciple, predict per-

formance for any mode of S-R presentation chosen for experimenta-

tion. The stochastic process whilch predicts performance for a

@ particular presentation schedule comes as a logically tight deriva-

- tion from the theory and does not represent the theory iltself.

| Examples of how a stochastic model 1s derived from a general learn-

ing model axiomatized in the framework of Chapter 4 are presented

| in Chapter 5, pp. 103,105,115,

E (5) Another contributer to the motivation for including Chapter L

is the bilas that progress in mathematical learning theory need not

- always be made by proposing a new theory of verbal learning (this

[a 1s not attempted in the paper) but by the bringing of formal tools
to the task of constructing new methods for drawing Inferences from

% data (for example, the correlational analyses developed in Chapter 2,

- pp. 22 - 24) as well as constructing a formal framework for drawing

!
“ﬂ conclusions from a theory once 1t is stated.

For these reasons, 1t is felt that Chapter 4 represents a definite

A——

contribution to mathematical learning theory, over and above the more

—

specific developments in the other chapters. Nonetheless, the contribu-
tion does not represent a final solution to the problems we have raised.

9




Of course, these problems and observations which motivated Chapter 4 had
been previously recognized by other investigators, and they are pooled
to warn the reader of the particular bent that the paper (especially
Chapter 4) will take.

Chapter 5 illustrates how the framework of Chapter L can be applied
to specific models. An analysis of the mixed model paralleling that of
Atkinson and Estes (1963) is presented in terms of the framework. Re-
sults for various presentation schedules are presented to illustrate the
flexibility of the framework, Next the all-or-none multi-level model
receives an additional analysis (to that given in Chapter 3) in terms of
the framework. The additional feature of this analysis is that the pro-
cess of deriving Markov models for a particular choice of presentation
schedule is illustrated (Chapter 5, pp. 103,105). Finally, Restle's
strategy-selection theory is developed in terms of the framework, and
several problems with its earlier axiomatizations are met squarely by
this analysis.

In Chapter 6, several experiments that the writer has conducted
are briefly discu.sed. In addition, possible directions for further
experimentation and analysis of multi-level processes in list-learning

are indicated.

10
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CHAPTER 2

DATA ANALYSIS ON VARIOUS LEVELS

TIn this chapter an analysis of the problem of levels of learning is
initiated in a somewhat restrictive situation. Suppose one has a list
of S-R pairs to be presented to subjects by the anticipation procedure.
Assume the list is struetured so that groups of stimuli paired to the
same response have inter-relationships, e.g., all stimuli paired to a
certain response start with the letter f, or all stimuli in a certain
response class are names of animals.

For ease of presentation it will be assumed, for the moment, that
learning is either on the single item level (P-level), on the rule level

(R-level), or on both. Let us illustrate this with the following list:

Stimulus Response

'_l

LEBESGUE
RTEMANN
STIELTJES
FISHER
BENKO
RESHEVSKY
STICKLES
PARKS
CASEY

W W w v v p -

Depending on instructions and whether or not the subject is familiar

with mathematicians responsible for a method of integraticn, contemporary
American chess players, or offensive ends for the San Trancisco Forty-
Niners, respectively, the subject might learn single S-R pairs or

groups of S-R pairs. The assumption made in this chapter is that the

11




unit of learning is the single item (Pmlevel}, or the set of 3 items
related by the rule (R-level;.

The ccncern of this chapter is with the properties of performance
measures, i.e., the predictions a learning model might make for various

ways of viewing the performance data. Considering culy errors and suc-

cesses, the primary datum from a subject in an anticipation procedure J
experiment is a long string of stimulus-result {error or success' pairs.
The two modes of data analysis corresponding to the theoretical notions
of P and R-level learning are as follcws: 1. For a P~level analysis
we abstract and pool all subsequences from the primary datum correspon-
ding to each stimulus in the list; and 2. For an R-level analysis we
abstract and pool all subsequences corresponding to a particular res=-
ponse. The example List has 9 P-level subsequences and 3 R-level sub-
sequences for each subject.
In the literature, mcdeis are usually developed with & particular
level of data analysis in mind (e.g., Bower, 1961, Restle, 1961,. Even
sO, a model can be viewed as a stochastic process which generates se-
quences of 1ls and Os (errors and successes If one wishes *o0 apply
a model, viewed in tnis way, t0 his data, he must choose a leveli i0r
levels) on which to apply 1t (e.g., Suppes, Crothers, Weir, and Trager, 1962).
Any nontrivial learning modelg/ predicts that data will look dif-. =

ferent when analyzed on different levels. As a proof consider a primary

datum as a string of 1s and Os. Depending on which subsequences are

abstracted for analysis, different results on such statistics as, for

gyOf course, for a trivial model producing strings of all zeros, each i
subsequence would also consist of all zeros and provide a single counter
example.
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example, the proportion of 1ls in the fifth place (i.e., Pr(error on
"trial" 5)) are likely.

Tt is a logical possibility that two learning models could agree
in predictions on one level of analysis but disagree on another. To see
this possibility consider the primary datum of strings of 1ls and Os,
two models might agree on the probability distributions over subsequences
7 but non-independence considerations might cause them to disagree on dis-
tributions over the primary datum level. For example it is possible

that a simple model could fit P-level data and yet fail to account for

an R-level analysis of the same data. Finally, it is possible for a
ﬁﬂ choice of models to be correct but a choice of level of analysis to be
wrong. Such a possibility must have occurred to Suppes, et. al. (1962)

- who actually used the same model on several levels of data analysis.

Comparison of One-element P-level and R-level Models

Tn this section we shall investigate the implications of the one=-
element model holding on either the R-level or the P~level., To illus-
trate some of the points above, both the R-level and P-level analysis
of date generated by the P-level and R-level one-element model will be

) presented. In the next chapter a model allowing both types of learning
i will be presented.

The one-element model to be used in this analysis takes the following

£

form (Estes, 1959, Bover, 1961). The unit to be learned starts in an
unlearned state U, On the presentation of a unit in state U, the
L correct response is made with probability g and an error with proba-

bility 1-g. After response, the unit shifts to a learned state L

with probability ¢ and remains in U with probability 1l-c. Units

|
L 23




in L are always responded to correctly; and, once in L, a unit re-
mains there. These assumptions are conveniently summarized by the tran-

sition matrix for the implied two-state Markov chain:

state on trial n+l Pr(correct|row state)
L U
state on 1 0 ] L
trial n U o lch g

If the unit is a single item, we shall refer to the model as the
one-element P-level model. If the unit is a group of items paired with .%
the same response, we shall refer to the model as the one-element R-level |
model. Logically there are four possibilities for Jjointly considering
the level of data analysis and the type of one-element model. These are
(p,P), (P,R), (R,P), and (R,R), where the first letter refers to the
level that data statistics are examined and the second identifies the
model.
The (P,P) and (R,R) analyses are analogous to the usual paired-
associate analysis of the one-element model (Bower, 1961) and the concept-
level analysis of the all-or-none concept modelé/ (Restle, 1961). The
reader wishing to review these analyses in greater detail is referred
to Atkinson, Bower, and Crothers (1965, Chapters 2, 3).
The (P,R) and (R,P) analyses are less usual and require some
comment. A (P,R) analysis consists of plotting data statistics on the
P-level when data has been generated by the one-element R-level model.
In other words the model implies the unit is the collection of M items
related by a rule; the learning of this unit is governed by the R-level

3/.

= Restle's model has a learning only on errcrs assumntion; whereas, the er
one-element R-level model assumes learning is equally probable after a
success Or an error.

1 =



model; however, for analysis, the unit is broken into P-level subse-
quences — one for each item. Rather than present a simulation of data
generated and analyzed in this way, the derivation of P-level statistics
for arbitrary parameter values of the one-element R-level model will be
presented. These derivations assume the anticipation procedure.

The (R,P) analysis is analogous to the (P,R) analysis except
that data are examined on the R-level and the model which generates the
data is a P-level model. In other words, several units (items in this
case) are combined into a single unit and studied.

To undertake the comparison of these four possibilities a set of
statistics was selected. These statistics were selected both because
they are among those usually considered in applications of models to
verbal learning data (cf. Bower, 1961) and because they reflect salient
points to be made in the analysis. These statistics are the learning
curve, probability of an error on trial nt+l given an error on trial
n, probability of no more errors following an error on trial n, dis-
tribution, mean, and variance of the total errors T, distribution and
mean of the trial of the last error L, and the probability of an error
on trial n prior to the last error.

To avoid future confusion a word about the meaning of "trial™ is in
order. By a trial on a unit is meant any presentation of any member of
that unit, and by the kth trial on a unit is meant the kth occurrence of
members of the unit. To illustrate, consider the list on p. 1l. The
fifth trial of the P-level analysis would refer to an item's performance
on the fifth cycle through the list, i.e., performance somewhere in the

trial block 37-45 depending on when the item appears on its fifth cycle.

15




However the fifth R-level trial would occur somewhere midway in the
second cycle of the list; i.e., the fifth R-level trial would refer to
performance on the trial number of the fifth presentation of members of
a category. This event would be constrained by the anticipation proce-
dure to take place midway in the secord cycle through the list.

Before presenting the results of the analysis, a further word about
notation is needed. Define X to be the error-success random variable

as follows:

t
1l if error on n h trial of unit

O if success on trial n .

Let T be the total error random variable (T = k means k errors
made on a particular unit), and let L represent the trial number of
the last error. Then the statistics chosen for the comparison are the

following, for n >1 and k > O3

n

2. Pr(xn+l = l|xn =1),

3, b = Pr(no more errors following an error on n;,
4. Pr(T = k), E(T), Var(T),

5. Pr(L = k), E(L),

6. 7r(x =1L >n).
The interesting comparisons of the four situations involve fixing
the level of data analysis and varying the model., This is what is usu-
ally done in comparative studies of models (cf. Atkinson and Crothers, .
1964). In Table 2.1 the (P,P} and (P,R) analyses are compared and
in Table 2.2 the (R,P) and (R,R) analyses are considered. Appendix
I illustrates typical derivations of equations presented in Tables 2.1

and 2.2. In these tables we shall refer to the parameters of the usual
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one-element model by c¢' and g'. ¢ and g will be the parameters of

the model analyzed on the inappropriate level, i.e., c¢' and g' for

(p,P) and (R,R) and c,g for (P,R) and (R,P). We shall assume

M items are paired to each response. Those readers not interested in

pondering the tedious derivations in Appendix I may note that for M= 1,

expressions derived for (P,R) and (R,P) should take the same form as

those of (P,P) and (R,R) respectively.

Certain similarities in expressions under (P,P) and (P,R) are

evident from the table. Pr(xn = 1), Pr(T = k), and Pr(L =n) are

geometric distributions for both (P,P) and (P,R). Also Pr(xn+l=l|xn=l),
b and Pr(xn = 1|L > n) are constant over trisls for both situations.
It is, however, immediately evident that a one-element model will

(P,R) .

not fit data statistics in There are a number of ways to demon-

strate this and one will be presented. Suppose that the one-element

P-level model does fit data statistics in (P,R). Then, from Table 2.1,

we have

P,R)(

Pr(P’P)(xn =1l >n) = Pr( X, = 1l >n) ,

which requires the functional identity

1-g' = l-g
or
(2.1) g'

g o

Now equating expressions for Pr(xn = 1) yields the identity

(1-g) [1-(1-c)M1[(1-c)My2"t
Me ?

(1-g') (1-c")?™t =

which, inserting (2.1), requires

WM
n-1 _ [1-($;c) 1 [(1ec)Myn-t

17

(2.2) (l-c')




Table 2.1 Comparison of (P,P) and (P,R).

Statistic (P,P) enalysis (P,R) analysis
. n-1 (1-g) [1-(1-c}™] Mn-1
1. Pr(x_ = 1) (1-g'1{l-c') = ~—= [(l-c) ]
n Mc
2. Pr(x, =1llx=1) (1-g')(1-c?) (1-g)(1-c)
.M
c' 1-({1l-c)
3. b = —— = D =D
n 1-g'(1l-c') l-g(l-c)M
4., 1i. Pr(T = 0) g'b' 1 - Liﬁ%ig
k- (1-g)b2 k-1
ii. Pr(T = k) (L-g'b')(1-b") Lo e (1-b)
(k > 0)
1-g' l-g
iii. E(T) = e
iv. Var(T) B(T) (550~ - E(T)] B(T) [ - B(T))
5. i. Pr(L = O) g'b' 1 (lﬁf)b
‘ - (1-g,[1-(1-c,™] M.n-1
ii. Pr(L = n) (1-g') (L-c?) ]‘b“ . o L= b[(l-c)]
\ (]
(n > 0}
iii. E(L) (l‘g';b' (1-g)
e Mc[l-g(l-c, ]
6. Pr(xn=l|L > n) (1-g') (1-g)

18
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(2.2) is satisfied only if M =1, and c' = ¢, but then the R-level
modeil would reduce to the P-level model. Thus, unless M = 1, the
(P,R) analysis can not be fit by the one-element P-level model, i.e.,
the two models are not equivalent on the P-level.

Thus similarities in equation type exist between (P,P) and (P,R);
however, the expressions are different functions of the parameters.
After presenting the results of the (R,P) vs. (R,R) comparison,
several other comparisons between (P,P) and (P,R) not depending on
the choice of a particular model will be developed. Also in Chapter 3
a model involving both levels of learning will be presented, and the
relative contribution of each sort of learning will be assessed.

In Table 2.2 the comparison between (R,R) and (R,P) is presented.
The contrasts are more striking than for (P,P) vs. (P,R), so not all
statistics will be presented in closed form. Again we are assuming a
list of size M. Finally one further convention is needed. If N is
an R-level trial we need the cycle number X(N) of an item appearing on

th

that trial. Since the K P-trial of an item is restricted to the R-

trial interval ((K-1)M + 1, KM) we have
(2.3) K(N) = max{k: M(k - 1) <N} .

In cases where it is obvious we will denote K(N) by K. Table 2.2

now follows.
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Table 2.2 Comparison of (R,R) and (R,P)
Statistic (R,R) analysis (R,P) analysis
K(N) -1

yN-1 (1-g) (1-c)

(L
M

1. Pr(xg = 1) (1-g') (L-c'

(1-c) (1-g) +h(1-c) ¥(1-8)

if N Mod M= 0

2. Pr(x, .=llx=1) (1-g')(1-c')
R B (1-c) " (1-8)

\  if N Mod M # O.

3. b c! b b*[gb*+l; *[l_(l_c)K-l]}N-M(K(N)-l)

« [gb*+(l;g)b*[l_(lnc)K]}M-l-(N-M(K-l)),

where b*=i:§%i:37° This function in-

creases with N.

i1) Var(T) L8 28 (1.2¢7)41] M(t'g)[lgﬁ(l-ec)+1]
_ g'e' _gc M
iii) Pr(T = 0) T (1] [[l-g(l-c)]]
iv) Pr(T = k) (l-g'b')(lJb')k-lb' Not obtainable in closed form by the

for k>0 writer.

g'e!' gc M
5. 1) Pr(L=0)  [er(iEn)] (=T
N~ ‘
i1) Pr(L = N) (1-g')(l=-c') Ly . .
K-1 ¥r ¥MK=N . %N-KM-1 °
for N> O (L=c) " ~(l=g)b L1 L ,
%____C ® .
where Db ’EIEKEZET and LK is the pro- .
bapility an item has its last error
on or before its kth cycle.
) (l-g' ) : «
1ii) B(L) ST (1-c)] NOT DERIVED n
6. Pr(xN=l|L >N  (1-g') NOT DERIVED
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There are several striking contrasts between (R,P) and (R,R).

Pr(x.= 1) for (R,P) is flat in periods of M R-trials, i.e.,

N
Pr(xN = 1) is equal to (l-g) for the first M trials, (l-c)(l-g)
for the second M trials, and (l-c)g(l-g) for the third M trials,

ete. In addition most other trial-dependent statistics take Jjumps on
trials kM + 1 for k = 0,1,2,... . Finally several statistics are
not constant with trials for (R,P) %but are for (R,R), e.g.,
Pr(xN+l = lixN = 1),

The similarities between (R,P) end (R,R)} are few. When they
do exist, they derive from the fact that the learning of each item pro-
cedes independently. This is most strikingly seen in Pr(T = 0), E(T),
and Var(T).

In summary this section has illustrated that the choice of a level
of’data analysis can influence the appearance of data statisties in much
the same way that a model, if valid, can influence these statistics. A
second point is that a model not only generates predictions for statis-
tics on the intended level of analysis, but it also generates predictions
on any level. This fact suggests that analyses on several levels in an
experiment might provide supporting evidence for the validity of a model.
The next section presents some cross-level analyses not restricted by

choice of model.

Model-Free Analyses of P- and R-level Learning

Next we discuss model-free methods for determining when some learn-
ing takes place at a higher level (more R- like) or a lower level (more
P-like) than the level of data analysis. What is meant by "model-free"
needs some clarification. We view performance, not learning. Thus some
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sort of theory (or model) must be assumed to infer learning from perfor-
mance data. By model-free is meant that we are assuming only that a
change in the degree of learning of a unit manifests itself in a corre-
sponding change in probability of correct to all items in that unit (i.e.,
an operational definition of "learning on a level” is desired).

Tn this section we parallel the structure of the preceding section.
First methods for determining when learning takes place at a higher level
than level of analysis will be discussed, and then indications of when
learning tekes place at a lower level than the level of analysis will be
developed. For ease of presentation we will present these results in
the context of the P- and R-levels of the preceding section. It should
be clear how to generalize these results to the case where more levels
exist.

Now we consider methods of indicating when learning is at a higher
level than analysis. Accordingly, congider the case where some learning
takes place on the R-level, For simplicity suppose M=2, i.e., pairs
of related items are assigned the same response. Imagine the two P-level
protocgls for an item pair are lined up one above the other. Since, by
assumption, a single learning event may have resulted in simultaneous
learning of both items in the pair, the sequences should bear a relation-
ship to each other. For example if the one-element R-level model held .,
with g = 0, +the pair of last error trials for the two protocols would
differ by at most one trial. Thus, if Sl and 52 are the two stimuli,
their protocols might look like the following:

S 1111111000000 - .

1 i,

S 1111111100000, - .

2 -
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Tn =eneral any tendency for R-level learning should produce "co-

variation" in protocol pairs of related items. Thus if 7' is a statis-

tic for the ith protocol p 1 2 should be non-zero.
27"

To illustrate, let xi and Xi be the error-success (1-0) ran-

dom variables for Sl and 82. Suppose the one-element R-level model

holds with c¢,g- free. It 1s a simple calculation to derive pol o
X X

n n
Cov{xlxz}
o _ nn’
xlx2 S 1 S 5
n n x© X
n ‘m
1 2 2 1 2
(2.4) Cov{xn x ) = E{x xn) - E(xn)E(xn)
1 2
= Pr(xn =1, x_ = 1) - Pr(x_ = 1) Pr(x_ = 1).

Taking the two possible orders of presentation of Sl and 82 on P-

trial n into consideration we have

Pr(xl = 1, 0 = 1) = (E'C)é.@’?"ﬁ) .Pr(xi =1) .

n n
Since
(o]

(2.5) 87, = 57, = Pr(xn = 1) ,

X X

n n
and
(2.6) E(xl) = E(x?) = Pr(x = 1)

n n n ¢
we have

Dec)(L-g .2(n-1
(2.7) p | o= ABzedlzn) |y g B0ty
XX

nn

The function starts at a value O on trial 1L and increases exponentially

ﬁ— -
to an asymptote of (2 cg(l g).
Of course the sample variance of the statislic p 1 2 would in-
X X
n'n

crease with n as fewer errors are made. Although not presented here,

.
i
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this sampling variance could be calculated from the model. Thus the

properties, including power, of a test of zero ¢p 12 could be established.

X X
nn

In general, P 12 should be fairly simple to compute for any R-level
X X

nn
model (or even a model which allows both P- and R-level learning such as

the one-element multi-level model presented in the next chapter) pro-
vided the model is in any way tractable.

Other statistics could have been chosen for a correlation analysis.
Several experimenters have empirically correlated total errors in an
effort to ascertain relationships among units in the learning phase
(Suppes, 2t al., 1962; Crothers and Suppes, in press), For example in
Chapter 5 of the Crothers and Suppes' book, subjects were required to
make multiple-choice grammatical ending responses to Russian nouns.
Several grammatical classes served as the "concepts" to be learned.
Various theoretical schemes for predicting the course of learning were
presented. They were assessed on their ability to account for the pat-
tern of pair-wise part correlations of total errors to the various con-
cept classes.

This writer would suggest that matrices of part correlations of
statistics such as total errors or trial of the last error could be used
often as a device for checking whether some learning is taking place on
a higher level than analysis. This procedure can be illustrated by an
unpublished experiment by D R. Rumelhart and the writer. Only the
analysis relevant to the correlation method will be presented now.

In this study college-age subjects learned to pair 24 highly struc-
tured stimuli to 6 response classes by the anticipation procedure. The

S-R pairs (which were consonant letters) had the following structure;
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Stimulus Response
1. ACE 1
2. ACF 1
3. ADE 1
b4, ADF 1
) 5. BCE 2
6. BCF 2
] 7. BDE 2
K 8. BDF 2
9, IcK 3
| 10. IGL 3
. 11, JGK 3
! 12, JGL 3
) 13. THK 4
| 14,  THL )
15. JHK 4
1 16. JHL 4
- 17. oQM >
18. ORM >
. 19. PQM >
1 20. PRM 5
1 21, 0QN 6
. 22, ORN 6
23. PQN 6
i 2k, PRI 6
o Tt should be noted that successive groups of four stimuli have a common
u letter and are paired to the same response.
)
)

|

n
jz
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The learning data appear very complicated and their analysis is

only partially complete at this writing. It appears that learning has T
taken place on several levels in the experiment. This fact was tested

by correlating trials of the last error to items in each group of four.

Without presenting the details of this analysis here, it demonstrated a

highly significant tendency for items in a L-unit to have similar last ..
error trials. By subtracting each subject's mean trial of the last
error from each of his 24 items, a control for individual differences

was attempted, i.e., the data for the analysis were of the form
. 2L,
LlJ-é}E y Y,
i=1
where Lij is the last error trial for item 1 subjeect J. More will
be said about this experiment in the next section of this chapter and in
Chapter 6.
Thus far we have considered in some detail the implications of
learning on a level higher than the level of analysis. The conclusion
was to compute correlations of various statistics on the units of the

level of analysis. Any significant non zero correlation could be inter-

preted as a possible indication of higher level learning.

Next we return to the guestion of the implications of learning at
a lower level than data analysis. The answers here are quite simple. .
Consider the R-level analysis of P-level data. It is a property of P- o
level learning, regardless of the model, that every M trials there
will be a jump in the learning curve, i.e., Pr(xN =1, will be flat
in periods of M trials. This result comes directly from the antici-

pation procedure and the assumption of P-level learning which implies !

that items are learned independently. .
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In addition a statistic such as total errors is easy to work with.

Regardless of the model we have

) = M Var(T!)

Var(T 5

R

where TR is the total error random variable for the R-level and Té
is the total error random variable for an item. This result comes from
the independence assmmption.
To illustrate these methods consider the experiment by Rumelhart
and the writer discussed on pp. 24-26. Pr(xN = 1) 1is plotted in Fig. 2.1
for the R-level analysis (M = 4). A definite tendercy for Pr(xN = 1)

to drop within a cycle indicates some R-level learning. The sizable jumps

in Pr(xN = 1) Dbetween cycle 2 and cycle 3 might indicate some P-level

learning. 1.00

.90

.

%ﬁ-\$ |
‘m/\\ %“\&m
IR Ty

L1t |
1 3 5 7 9 1113151719 21 2% 25
R-trials, N

Fig. 2.1. R-level Learning Curve for the
1ist depicted on p. 25 (M = h).

The R-level Jearning curve is also used to show some R-level and some

p_level learning for other experiments in Chapter 6 (p. 134, rig. 6.12).
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In addition to the learning curve and Var(TR), Pr(xn+l

should jump on trials kM + 1, k = 1,2,..., and the stationarity curve

should rise over trials. Of course this latter feature could be accounted

for by other P-level models such as the two-element model (Suppes and

Ginsberg, 1963).

Conclusion

In this chapter we have discussed some of the implications of
learning on various levels. Two methods of inferring level of learning
have been developed, though not exhaustively. The first is to assume a
model and then derive statistics for analyses on several levels. In-
ferences can then be made on the basis of the fit of the model to the
data. The second method involves considering the general properties of
the assumption of learning at a certain level. These properties, which

depend on the mode of item presentation, suggest several statistical

analyses, €.8., P 1 2° This chapter will have served its purpose if it
X X

nn
convinces the reader that valuable inferences can be made from analyses

of data on several levels.
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CHAPTER >

THE ALL-OR-NONE MULTI-LEVEL MODEL

The derivations and results of the previous chapter dealt mainly
with the case where learning was assumed to take place on either the
P-level or the R-level but not both. In cases where there would be any
question of which level learning takes place at the more likely possi-
bility would seem to be some learning on both levels. The question then
arises as 1o whether extant verbal learning models, such as *the one-
element model, can naturally be generalized to allow for learning on
several levels simultaneously. In this chapter a simple generalization

of the one-element model to allow for such simultaneous learning is

developed. In the next chapter a framework is proposed for axiomatizing

other multi-level models.

The model to be developed in this chapter (the all-or-none multi-
level model) is intended to be a simple and natural extensi~m of the
one-element P- and R-level models. It is not intended to represent a
theoretical stand on the issue of how paired-associate learning takes
place. So, rather than regarding this model as an addition to the
crowded literature on paired-associate models, it should be regarded

as an exercise in the synthesis of extant models.

Axioms for the Model

In the development to follow we will assume that subJjects are
learning a list with a structure similar to the list on P. 11, Chapter 2.
In general, we assume that the list consists of J groups of M stimuli,
where the members of any group are mutually related and each paired with
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the same response. By the stimuli in a group being related is meant
that there is some common rule or common structure to all the stimuli
connected to any particular response. Thus in the previously mentioned
1ist the three rules are respectively: mathematicians are ones, chess
players are twos, and football players are threes. No particular pre-
sentation schedule is assumed, but the model will be axiomatized under
the assumption that on any presentation of a member of the list the sub-
ject first gives a response and then receives a paired presentation of
the stimulus and its correct response (i.e., any particular presentation
is like a particular presentation for the anticipation procedure. )

We wish to generalize the one-element model to allow for the possi-
bility of learning the rule on any presentation of a relevant S-R pair
and, in addition, to allow learning of that particular S-R pair if the
rule is not learned. Accordingly, we will define an unlearned state U,
an instance (paired-associate) state, P, and a rule-~learned state R.
We require that each of the M' items be in one and only one of these
states on any trial. Transitions among these states are possible only
when an item is presented, and the probabilities of these transiticns
do not depend on the past history of presentations and responses but only
on the current state of the presented item.

The major departure from usual models is the assumption that if any
item makes a transition to the R-state all other items on that trial
move to the R-state. Thus an item's state may change when it is not
presented. Finally performance (probability of a correct response) is
assumed to be ot a level g in state U and at a level 1 in states

P and R.
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More formally, let N index presentations of items in a block of

(i.e., R-trials);axioms for the all~or-none multi-level model are as

follows:

1.

(5.1) item on P

L.

Fach of the M items is represented as being in exactly one of

e ——————————— GAPNEN  EE—————  SS—

three states on any trial N, The states are an unlearned state

U, an instance learned state P, and a rule learned state R.

All items start in state U, i.e., all items are in state U on

R-trial N = L.

When an item is presented it can change its state, and the proba-

bilities governing these changes depend only on the current state

of the presented item and not on the states of any of the other

M-1 items, the past states of any of the M items, or the trial

number.

The assumptions about transitions to new states for a presented
item are exhibited in the following stochastic matrix. The ijth
term in the matrix is the probability a presented item in state 1
will reside in state J on the next R-trial (i,j € (U,P,R}).

State of item on
R-trial after Presentation
P U
0 0

c l-c 0

'__l

state of R

trial of
presentation U r P l-r-p

If on any trial the presented item makes a transition to state R,

the other M-l items immediately make a transition to state R so

that gg_all R-trials after this event all M items are ig.state R.

Other than this possibility of transition, items not presented

remain in their current states.
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This axiom can be summarized by the following rule:

a. If the presented item is in state U, the other M-1 items all
stay in their current states with probability l-r and all move to
state R with probability T';

and

b. If the presented item is in state P, the other M-1 items all

stay in their current states with probability 1-c and all move

to state R with probability c.

6. Let xg bea random variable defined by
1 if error on R-trial N
}(‘_N=

O 1if success on R-trial N.

Then

(l-g) if presented item in U

It
-
~r
]

Pr(xN

ﬁ 0 if presented item in P

\ 0 if presented item in R »

Theorems and Derivations

Some of the properties of this model will be presented in the theorems
and derivations to follow. The first theorem shows that, under appro-
priate : :strictions on the paramesters of the all-or-none multi-level
model, the one-element P-level model and the one-element R~level model
are obtained.

Theorem 3.l

a. If r=c=0 and D e {0,1), the all-or-none multi-level model

is equivalent to a one -element P-level model.




i

b, If p=0, r=c¢, and r, c € (0,1), the model is equivalent to
a one-element R-level model.

Proof

a. If r=c¢=0 and p e (0,1), items can change their state
only when they are presented. Since all items start in state U, state
R can never be obtained. Thus the restriction implies the all-or=-none
multi-level model can be summarized by the following stochastic matrix

fOI‘ eaCh itemo S 9 a = 1’2’ tee M:

(94
P 41 Un +1 Pr(correct|row state)
9/ o
Pn 1 0 1
(@4
U 1Y 1l-p g ’
Yo

where oy indexes presentations of item %a (i.e., P-level trials on
any item). This is the one-element P-level model.

b, If p=0,r=c, r,ce (0,1), all M items start in U and
any presentation results in a transition of all the items to state R

with probability r. If N indexes R-level trials, the following

stochastic matrix for all M items can be derived:

R U Pr(correct|row state)

S N

This is the matrix for the one-element R-level model H

Some additional notation will facilitate the statement of the next

theorem. Suppose the M items in a block are ordered: Sl,SE,c.a,SMc

For each R-trial N define the state variable for the block, Tky to
= ! s 0. ! i j:' i

be ?& (Tl,N’TE,N’ ’TM,N)’ where Tk,N is the state of item S
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on trial N for k = 1,2,...,M. The preceding axioms for the all-or-
none multi-level model could easily be written in terms of the random
variable T&, but this will not be done here (see p. 45, Chapter 4).

The next property of the model to be developzd has implications for
experiments involving post~learning transfer. Suppose that following an
initial learning phase subjects are asked to make "best guess" responses
to new stimuli. Suppose further that the new stimuli are constructed
similar to stimuli in one of the blocks of M items, i.e., the new
stimuli share a relationship or a rule with the other M stimull in the
block. It is a conseguence of the following theorem that the more initial

training trials on the block of M related items, the higher is the pro-

bability of the appropriate transfer response to these new items.

Theorem 3.2

If r,p,c € (0,1, and N indexes R-trials on a block of M

stimuli, then

lim Pr(‘-i?N = (‘R’R’HIG’R)) 1l .

N -
The theorem follows from the fact that state T = (R,R,...,R) i5
an absorbing state. Let 6 = min{c,rj. By hypothesis 0 < 6. Since,
on any trial N, the block of M items has either probability r or

c of moving into state (R,R,...,Rj, we have

H

PI‘(?N (R,R,-an,R)) _>_ 1-( L-Q)N-l )
hence

(R,R,J.:,R')) > lim El-(l-@‘)N] = 1 .
N —»o00

1> lim Pr(T
Z N
N -

]

The above inequality implies

lim Pr(ri?N = (R’R”)I"R-)) = l H
N e

3l
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R,

. The'next Theorem and Lemma imply that the order in which items are

¥ presented does not affect the probabilities of being in the various

states.

Theorem 3.3

Suppose Si and S, are presented on R-trials N and N+1,

J
i,J = 1,2,...,M. Then, for all possible states Eﬁ ' of the set

of M items,

- -
_ Pr(T%+2 = t'lﬁ% € 5y SJ,N+1)
B
— ->| g
= Pr(fk+2 =T IT& = T, SJ,N’Si,N+l) .

Proof
‘H The apparatus necessary for a completely rigorous proof of this
Theorem will not be developed until the next chapter. What follows is
an outline of the main ideas in the proof. If ﬁ% = (R,R,...,R), the
result is immediate, so assume ﬁ& # (R,R,...;R). Either T%+2 = (R,Ry..+.,R)

or it does not. If T (R,R,...,R), then commutativity follows by

N+

noting, for all real numbers, a, b,
a+ (1l-a)b = b + (1-b)a .

Using this fact with a = r, b = ¢ establishes the result for TN+2 =

) (R,Ry++.sR).

If T,

N+2
only the state of item Si (similarily for Sj)‘ Since these effects

# (R,R,...,R), then a presentation of s, cen affect

e
N

ﬁq are independent, the order of appearance of 5, and Sj does not

matter ||
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The preceding theorem will receive more attention in the next

chapter (p. U47). Next we state a lemma which provides a strong test

for the all-or-none multi-level model.

Lemma 5.1

Suppose in the first N R-trials ki Si presentations are to

be made, where i = 1,2,...,M and

k- = N L]
i

) =

i
Then the order in which these stimuli are presented does not affect

the probability of beingin the various states on N + 1.

Proof

The lemma follows by repeated application of pairwise commutativity
established in Theorem 3.3 H

The preceding theorem and lemma provide both a strong test for the
all-or-none multi-level model as well as a considerable reduction in the =
complexity of derivations from the model under certain presentation
schedules. These points will be brought out in more detail in Chapter
5 (p, 100) where an additional analysis of the model (in terms of the

framework to be developed in the next chapter) is presented.

Derivations for the Anticipation Procedure

The model can also be used to provide a synthesis for the results o
of the preceding chapter. Under the assumption that r = c¢ (rule
learning is equi-probable from both the P and U states) the multi-
ilevel model reduces to a model that postulates two simultaneous all-or-

none processes; one for P-level learning and one for R-level learning.
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Tn the next few pages statisties for both the P-level and R-level will
be presented under the assumption of an anticipation presentation sche-
dule.

Tt should also be clear that under suitable additional restriction
of the parameters p and T, results relevant to the four possibilities
in Tables 2.1 and 2.2 of Chapter 2 can be obtained. Table 3.1 indicates
the parameter restrictions which yield the four possibilities analyzed

in the previous chapter (based on Theorem 3.1).
Table 5.1

Conditions under which the All-or-None Multi-level Model Reduces

to the Four Analyses of the Preceding Chapter (Tables 2.1,2.2).

Restrictions on Level of data analysis
Chapter 2 analysis Multi-level parameters of Multi-level model
E (P-ANALYSIS, P-MODEL) c=r=0 p
(P-ANATYSIS, R-MODEL) c=r,p=20 P
(R-ANALYSIS, P-MODEL) c=1r=0 R
(R-ANALYSIS, R-MODEL) c=r,p=0 R .

Thus, a statistic derived for the multi-level model should reduce to its

corresponding expression in Table 2,1 or Table 2.2 of the preceding
l chapter if the indicated parameter restrictions are made. Exceptions
are when r appears in the denominator of an expression, €.g., Pr(xn=l)
) for the P-level analysis (see Table 3.2).
Only Pr(xN = 1) and Pr(xN+l = l|xN = 1) have been presented for
the R-level analysis. Some of the other results cannot be obtained by
% thig writer in closed form, and others seem much too cumberzome and un-

informative to present. The results of the P- and R-level analysis of
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the restricted (r=c) multi-level model appear in Table 3.2 to follow.
T+ should be reiterated that the anticipation procedure is assumed and
that each group of related items has M members. For selected deriva-
tions of these statistics, the reader is referred to Appendix I. Finally
K(N) refers to the cycle number corresponding to R-trial N (Eq. 2.3).

The all-or-none multi-level model is an intermediate model to the
P- and R-level models in the sense that it postulates both P- and R-level
learning. It is of some interest to compare the analyses of Table 3.2,
with those analyses of the P and R models in the last chapter (Tables
2.1 and 2.2, pp. 18,20, respectively).

The results in Table 3.2 for the P-level analysis bear a resemblance
to the results for the P-level analysis of the one-element R-level model
{Table 2.1). Pr(xn = 1) 1is a geometric function of n, and Pr(T = k)
and Pr(L = n) are geometric distributions. Similarly Pr(xn+l=l|xn=l),
'bn, and Pr(xn = llL > n) are constants. Even with these similarities
(which also hold for the usual one-element model) the multi-level model
is an alternative to the P-level analysis of the one -element R-level
model. This can be shown by comparing selected statistics in Table 3.2
with those of Table 2.1.

Denote by R the one -element R-level model and by L the multi-
level model, assume both models are analyzed on the P-level. Denote the
parameters of R by c’, g' and those for L by p, T, & Assume the
models are equivalent. Then, by equating Pr(xn = llL > n;, we have

the functional identity

(3.2) g' = g .



Statistic

1. Pr(xn = 1)

2. Pr(x

ii.

iii.

iv.

juil

iii.

o

n+l

. Pr(T = 0)

Pr(T = k)
(k > 0)

E(T)

Var(T)

. Pr(L = 0)

Pr(L = n)
(n>0)

E(L)

Pr(xn=l|L > n)

=1|xn=1)

Table 3.2, P- and R-level Analyses of the

All-or-None Multi-level Model (r = e).

P-level Analysis R-level Analysis
M -1 K(N)-1

Qegl-Qer) ] ) pyel) (Le)(n)™ (.11—9—,11;_;*‘)

(

L8 [1-rep)+(u-1) (1-r) (2-p)KV)

(1-g) (L-p-r) (1-r)F2 { if NMod M =0

- (1-g) (1-r) (1-p) KL

\ if NMd M#O
1-(1-p-rj(1-r)*?
l-s(l-p-r)(lff)M'l

L (eg)1-(er)™]
Mr[1-g(1-r-b)(1-r)"™]

M

p(1-p)E-t (1-g)(1- l-rM]

Mr[1-g(1-r)

(1-g)[1-(1-r)™]

Mr[1-g(1-r)"Ip
B(DER - B(1)]

(1-g)[1-(1-2)"]
Mr[l—g(l-r-b)(l-r)M'l]

l -

) -1
(1-g)[1- (1) (1 (1opor) (Lor ) L1 (Lopor) (2or) T

Mr[1-g(1-p-r)(1-r)¥]

(1-g)[1-(1-r)M]
Me[1-g(1epor) (1-r)" [ 14 (1-p-r) (1-r)M1]

(1-g) .
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Comparing Pr(xn+l = llx% = 1) for R and L yields the identity
1

(1-g') (1-c"Y™ = (1-g) (1p-r) (1)L,

which, inserting 3.2, reduces to

(3.3) (1-c )M = (1oper) (123 .

Now comparing Pr(xn = 1) for both models yields the identity

1 1 M
(g (100" oy

(1-g) [1-(1-r)' o

gM-l]n-l
Mr

1-p-r}(1l-r;

-]

Substituting (3.2) and (3.3) yields

(3.4) l-(l-c')M _ l-(l-r)M
o c’ r o
This last identity implies c¢' = r.
Now
c' =r
and
: M N M-1
(1-c¢')™ = (l-p-r)(L-r)

only if p =0, but in this case model L becomes model R. There-

fore we conclude that provided p # O, the multi-level model is not

equivalent to an R-level one-element model analyzed on the P-level,

Now we turn to a comparison of the R-level analysis of the multi-

level model and the (R,P) analysis in Table 2.2. The two statistics

presented in Table 3.2 for the multi-level model bear similarities to
their counterparts of Table 2.2 in the preceding chapter. Pr(xiN = 1)
jumps on trials kM+#l for k=1,2,... for both models, and Pr(xN+l=1lxN=1)

is constant in successive blocks of M trials and jumps on trials kM+l.
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The major difference between the two models is in Pr(xN = 1) be-

tween jump points (i.e., within a cycle). Within a cycle the one-ele-

ment model Pr(xN.= 1) is flat; whereas, for the multi-level model, it

is geometric in shape. To see this, Pr( 1) for the multi-level

Xy =
model is plotted, for g = 1/5, r = 0.1, p = 0.3, M = 3, in Fig. 3.1

below.
l.OO e

wePmee Within cycle
- = == between cycles

S50 \

LN~
.20 |- \~""‘~t.

.10 |~ \—0

] | | | | J | | | | |

1 2 3 4 5 6 7 8 9 1011
Trials, N

Fig. 3.1. R-level Learning Curve for

All-or-None Multi-level Model (g = 1/5,
r =0.1, p=0.3 M=3).

Pr(xN =1)
=
O
1

Next we discuss correlation of item protocols for the multi-level
model. Just as for the one-element R-level model, one would expect any
two item protocols for related items to "co-vary." In the preceding

chapter we introduced o ; , (Eq. 2.4) as a trial dependent measure of
X X
n'n

. e 4 i .
this co-variation (where Xn is the error-success random variable for

item i). Assume M=2, then p | o for the multi-level model (r=c) is

X X
nn

41




Pr(xi =1, xi =1) - Pr(xi =1) Pr(xi = 1)
(3.5) .
Xn®n VAPr(xi = 1) V/ér(xi = 1)
= Pr(xl = l[x2 =1) - Pr(x = 1)
" n

P15 is different for the one-element R-level model than for the multi-
X X
nn

level model. For the one-element R-level model, p , 5 starts at O

as n 1increases.

for n=1 and increases to an asymptote of

However p 12 for the multi-level model starts at O, reaches a maxi-

X X
nn

mum for some n > 0, and then decreases to an asymptotic value of O.
This latter fact is true because, for large n, Joint errors are only
made to pairs of items not in state R and not bcth in state P. Given
one item is not in P, the probability the other one 1s in P increases
with n, i.e., the P~level process prior to the trial of transition
into state R procedes independently for the two items.

An analysis of the general multi-level model with rfc will be
postponed until Chapter 5 (p. 98). This is because analysis of the
model is greatly facilitated by a reformulation in terms of a general
framework for analyzing multi-level models. The direction of this re-
formulation (alternative axiomatization) will be presented in the first

section of the next chapter.
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CHAPTER L

GENERAL FRAMEWORK FOR MULTI-LEVEL MODELS

In the preceding chapter we have illustrated how a particular multi-
level model might be developed. There is a property of this multi-
level model that differentiates it from most other learning models.
This property is that, under certain conditions, the M-1 items not
presented on a trial change their states; whereas, under other condi-
tions, only the presented item changes its state. In the axiom set for
that model (Chepter 3, p. 31), it was awkward to formulate these
properties. Thus the statement of Theorems 3.2 and 3.3 was greatly
facilitated by the introduction of the random variable E& (Ckapter 3, p. 33),
which keeps track of the states of all M items in a block. In addition
some further analyses of the model (Chapter 5, pp. 98-105) are
greatly simplified by formulating the all-or-none multi-level model in
terms of E’ .

N

The organization of this chapter will be as follows. First the
direction of reformulating the all-or-none multi-level model in terms
of E& will be indicated along with some of the advantages of this
formulation over the formulation of the preceding chapter. This work
will suggest a general framework within which many models that allow
learning on several levels (or, equivalently, that allow items in a list
to mutually affect each other in the course of learning) can be axiomatized.

Before the framework is formalized, an indication of its intended

scope will be presented. The scope of the framework will be presented

by organizing the classes of models to which the framework can be
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applied under three headings. These headings will refer to three types,
of item dependencies (item interactions) permitted by the framework,
and several examples of extant models embodying each type of dependency
will be presented.

Finally the framework will be developed formally along with several
theorems that can be applied to the analysis of any model axiomatized
within the framework. The theorems fall into two classes. The first
few theorems (Theorems 4.1, 4.2, 4.3) concern how to compute state pro-
bebilities and response probabilities for a model as a function of
properties of the model and the presentation schedule. The latter
theorems (Theorem 4.4, 4.5) concern how a model can be simplified along
the lines of the particular dependencies it postulates, i.e., the frame-
work will require that a model be stated in some generality and these
theorems will concern how to reduce the generality in individual cases.
The next chapter will present applications of the theorems to the analysis
of the mixed model (Atkinson and Estes, 1963), the all-or-none multi-
level model of Chapter 3, and a version of Restle's strategy-selection
theory (Restle, 1962; 1964, Chapter 4).

To recapitulate the organization of this chapter, we will first
reformulate the all-or-none multi-level model. This reformulation will
suggest a general framework within which several models can be analyzed.
Before presenting the formal aspects of the framework, an indication of
the types of models which can be axiomatized in terms of the framework
will be presented. Finally the framework will be Auveloped along formal
lines, i.e., definitions and theorems. Now we turn to the reformulation

of the multi~level model.
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} Reformulation of the All-or-None Multi-level Model

3

o
| o= catu

Tet us reconsider the all-or-none multi-level model. Suppose the

_)
M items in a block < ordered Sl,S2,oo.,SM° Let T be a possible

P

_)
M-tuple of states for the M items, e.g., T = (R,Ry+++,R). Define gf

. to be the set of all possible states of the M items. The axioms on

i
e e

p.3L of the preceding chapter imply

‘ M
(4.1) S = kX (U,P} U ((RyR,...,R)} ,
=1

M
where X (U,P} is the M-fold Curtesian product of the set (U,P). Al
=1

{ has 2M + 1 members.

Tt is a property of the axioms for the model that, if the current

_)
state of the M items, TN’ 1N
)

is known, for N=1,2,..., then the probabilities of being in the various

2M#1 states in Zf on trial N+1 are determined and are independent

is known, and the presented item, S

of past presentations, past states of the M items, and the trial index

> .
N. Suppose that the 2M#1 menbers of Zj are ordered, ij:: (@;,T;,...,T M ) s
2 +1
then it is convenient to summarize the preceding remark by noting that

the model implies that each of the items, S Las an associlated set

i,
|
l of transition probabilities from €f to %3, where, for i1i=1,2,...,M

and for all T: iﬂ € %3,

Pr(T

' 1{I+1IS T%)

1,N’

is determined (independent of ). Tt ie desirable o represent these

probabilities of transition from states in %J’ to states in %f by a

P

stochastic matrix Pi for each item Si’ i=l,2,...,M. Then, Pi is a

(2M#l) X (EM#l) matrix of the prohabilities of transition from states

oy

~—
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in %} to states in o given S, 1o presented. Thus, if item s, is
presented on some trial N, then the associated matrix Pi determines
the probabilities of being in the various states, fae g’, given the
current state of the set of M items. The Pi matrices are analogous
to the stochastic matrices used to represent Markov learning models,

e.g., the one-element P-level model has an associated stochastic matrix

n+l n+l
P, 1 o 1
P =
U c l-c
n

As will be seen in Theorems 4.1, 4.2, 4.3, these matrices, P,, will
be used to compute the probabilities of being in the various states
given certain item presentation orders in much the same way as [P 1is
used to compute these probabilities for the one -element P-level model.
The major difference in the two cases will be that the Pi matrices
are used to compute the probabilities of being in various states of the

entire list, whereas, [P is used to compute the probability the pre-

sented item is in various states.

A reformulation of the all-or-none multi-level model can be accom-
plished in terms of the state space  and the M stochastic matrices, e
Pl,.no,PM,
of this reformulation is presented in Chapter 5, pp. 98-105. When the

defined in the preceding paragraph. An additional discussion i

reformulation is done, it is much easier to state properties of the
model than for the more conventional axiomitizaticn of the preceding
chapter. To +llustrate, suppose M=2. Then & = {(U,U),(U,P;,(P,U}, o

(P,P),(R,R})}. If the items are 5, and 85

1 oy WE have “v
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(R,) (p,P) (P,U0) (U,P) (U,U)

(RB,R) [ 1 0 0 0 0

E (p,P) c 1-c 0 0 0

(4.2) P, = (P,U) c 0 1-c 0 0
I (u,P) r P 0 l1-r-p O
] (v,u) | 0 P 0 1l-r-p] ,

and
; (R,R) (P,B) (B,0) (U,R) (U,0)

(R,R) [ 1 0 0 0 0 ]

A (P,P) c 1-c 0 0 0
i (4.3) P, = (pP,U) r P 1-r-p 0 0
) (U,P) c 0 0 1l O
1 (u,u) | 0 0 p  1lr-p| .

Now, for example, to verify commutivity for the model with M=2 (Theorem
) 3.3, p.35 ), one merely needs to show that P, P, = P,e P, The result
l is as follows:

(4.4) 1 0 0 0 o
“ 1-(1-c)2 (1-c)2 0 0 0
5 P, - P, = PQ' B, = ct(1-c)r p(l-c) (1l-c)(l-r-p) 0 o)
: e+(1l-c)r p(l-c) 0 (1-¢) (L-r-p) o)
*ﬂ r(er) P p(l-r-p) p(lr-p)  (1-r-p)Z
L The basic idea of verifying that the Pi metrices commute provides

the substance of Definition 4.7. Models which have this commuting pro-
y perty are much easier to work with than non-commuting models.
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In addition to facilitating analysis of the model, the preceding
formulation has another possible advantage. This advantage is that the
model is stated in terms of the theoretical quantities Qj and the M
matrices, which depend in no way on boundary conditions such as the pre-
sentation schedule or the level of data analysis., In other words, the
stochastic process used to account for data in a particular experiment
is not the model itself but a derivation from the model coupled with the
particular presentation schedule and the level of data analysis. A
model stated in this way can receive support from two sources; 1) its
ability to make detailed predictions in a fixed situation (fixed sche-
dule and level of analysis), and 2) its ability to account for the
data in a number of different experiments in which both presentation
schedule and level of data analysis vary One jllustration of the way
boundary conditions are coupled with a model to derive a stochastic pro-
cess for a Tixed level of analysis is reported in Chapter 5 Pp. 104-105.
Theorems 4 2 and 4 5 are used for the all-or-none multi-level model
(M=2,. The anticipation presentation schedule 18 assumed and the level
of data analysis is chosen as ihe error-success process on the Tirst
appearing item in a cycle, i-e-, regardless of which of the two items
is presented first on a cycle, the result of +that trial is entered in
the error-success protocol.

The preceding development is designed to preview the framework to
be formalized in this chapter It turns out that the framework is
applicable to the analysis of many exrant models which postulate item
dependencies in the course of 1ist learning. Before presenting the

framework, the classes of models which can be axiomitized in terms of
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the framework will be organized around the types of item dependencies
they postulate. This digression into other models has several motiva-
tions. First it is designed to show that the framework to be developed
has wide applicability to extant models. Second it is the writer's
feeling that more and more of the recent mathematical learning models
are embodying some item dependencles in their assumptions (e.g., memory
models). Thus it 1s becoming less and less often that models assume the
learning of S-R pairs proceeds independently. It appears that one con-
sequence of this tendency 1s that some methods of model analysis other
than the traditional P-level analysis for the anticipation procedure

are in order. With the knowledge that the case for this trend in mathe-
matical learning theory can be made only by welght of evidence; we turn
to this task.

If learning a list is presumed to take place on the P-level (level
of individual items), then it is convenient to view each separate sub-
Ject-item error-success (l-O) protocol as a sample path from some sto-
chastic process whose sample space consists of all strings of 1ls and
0s (cf. Atkinson, Bower, and Crothers, 1965, p. 82-83), If, on the
other hand, the assumption of subject-item independence seems unrealistic,
then this analysis is, at best, only approximately correct. A survey
of some of the literature on mathematical learning models reveals that
there are at least three distinct types of item dependencies postulated
by models. This section presents a discussion of these three theoretical
types of item dependencies, and then the framework, which is designed
to incorporate the possibility of all three, is formalized.

The first type of item dependency postulated by scme models 1s that
response probabilities for a presented item may not depend solely on the

L9
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state of the presented item, but also on the states of the other items
in the list. The mixed model of Atkinsor and Estes (1963) provides an
example. In this model transitions among states for the presented items
are independent of the states of unpresented items, but response proba-
bility to items in the unlearned state 1s determined by the states of
all items in the list. The work of Friedman is related to the mixed
model (Friedman and Gelfand, 1964; Friedmen et al., 1966,. In the
Friedman, et al., paper, a three s. ¢ Markov learning model on stim-
ulus patterns is postulated, and a number of complex response rules in-
volving stimulus components are developed.

Ruskin (unpublished doctoral dissertation] has analyzed the learning
of concept stimuli composed of three two-valued dimensions in terms of
models which assume that learning proceeds independently for each item,
but that response probabilities to items in unlearned states depend on
the states of all items in the list. He has had some success in account-
ing for differential numbers of errors to each stimulus in such problems.

The second type of item dependency postulated by models is that the

state of an item can change on trials when it is not presented. The

concept learning model of Restle (1961) fits into this category. Strictly

speaking this hypothesis model has the property that the states of each
item may or may not change when a new hypothesis is sampled. The usual
all-or-none two-state model presented by Restle (1961; and also by
Bower and Trabasso (196L) represents the process of concepi learning in
a much more simplified manner than their iheory implies. They accomp-
lish this by lumping the states of certain Markov chains implied by the
theory. Even this simplified model has the property that items not pre-

sented can shift to the learned state.
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More recently Restle (1962, 1964) has proposed a strategy-selection
theory for paircd-associate learning. The theory supposes that two simi-
lar items requiring dissimilar responses may become confused. Confusion
is represented in the theory by certain mnemonical devices or strategies
which the subject might use to retrieve an S-R palr from memory, i.e.,
if two S-R pairs in a list were AB-1, AC-2, then the strategy A-1 would
result in confusion between AB andAC° It is a consequence of Restle's
theory that an unpresented item, say AC in the above miniature list,
can change its state when anotker item, AB, is presented. In Chapter 5,
pp.108, Restle's model will be analyzed in detail using the framework
to be developed in this chapter.

The all-or-none multi-level model presented in the previous chapter
is another example of a model that allows states of items to change on
trials when they are not presented. An additional analysis of this
model in terms of the framework will be given in Chapter 5, p. 98.

A fourth example is the trial-dependent-forgetting model (T.D.F,
model) of Atkinson and“Crothers (1964) and Calfee and Atkinson (1965).
Tn this model an item in a short term memory state can be bumpcd into a
forgotten state as a consequence of the presentation of another unlearned
item.

The third type of inter-item dependency postulated by models is
that the state of a particular unpresented item can influence the tran-
sition probabilities for the presented item as well as other unpresented
items. One example of this dependency is the Buffer Models of Atkinson
and Shiffrin (1965). In these models the probability that an item will

enter the short term memory buffer depends on the number of other items
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already in the buffer Similarly whether or not an item in the buffer
1s dropped on a certain trial depends on how many other items are in
the buffer. In uost applications, however, the buffer is assumed to
be full, |

A second example is the two-person game situation discussed in
Suppes and Atkinson (1960) . Player A can be in response state A, or

1

A and the transition probabilities depend on the response state of

o7
player B in the sense that the states of both players determine the pay-
off probabilities, aﬁd the‘payoff determines; in turn, the transition
probabilities.

A third example comes from a slight generalization of the all-or-
none multi-level model presented in the last cnapter. Suppose the pro-
bability of rule learning when all items are in U is r, but the pro-
bability of rule learning when any item is in P is c £ r. Then a
presented item in state U would have rule learning parameter r or
¢ depending on the states of other items in the list

In each of the examples presented, the probability of a response
on trial n, Pr(A, _|S. ), depends not

J i,n" " j,n

only on the number of previous presentations of the item but also in

Ai to a presented item S

some way on the number and positioning of presentationz of items other
than Sja This seems to suggest that a useful testing ground for models
embodying item dependencies is in experiments where the presentation
orders are manipulated and predictions of the probabilities of wvarious
responses are made. It seems to this writer that the ability of a model

to account for various patterns of response probability as a function of

controlled presentation orders is every bit as strong a test of a model
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as its ability to account for subject-item error-success protocols in

{: an anticipation procedure experiment. Of course thne preceding remark

{T assumes that the model makes differential predictions of response pro-

] bability as a function of presentation order.

EU This presentation order approach to testing models which imply item
dependencies has already been used by many, e.g., the miniature RTT

§~ paired-associate experiments (Estes, Hopkins, Crothers, 1960; Izawa, 1965;

g‘ Young, unpublished doctoral dissertation), the work on optimization

(Suppes, 1964; Crothers, 1965; Groen and Atkinson, in press); and work
l with memory models for paired-associate learning (Greeno, 1966; Atkinson

and Shiffrin, 1965; Bjork, unpiblished doctoral dissertation).

The Framework

A. History of Major Ideas

Tn this section a framework providing a possible synthesis of
models which permit any of these three types of dependencies is developed.
A number of general theorems for predicting state probabilities and res-
ponse probabilities as a function of presentation sequence will be pre-
cented. The maein theoretical quantity in the framework will be the
state of the entire list rather than the more usual state of an item.
The state of the list will be represented by a vector of states of the
items in the list. Each item in the list will be characterized by a
matrix of transition probabilities from states of the list to gstates of
the list. A matrix associated with an item will be effeective whenever
that item is presented on a trial, i.e., to compute state probabilities
on trial N+l one applies the matrix operator associated with the item

presented on trial N to the vector of provabilities of being in the
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various states of the list on trial N. A trial is defined to be the
presentation of an item for a responee, followed immediately by the
item paired with its correct response, i1 €., & trial here is equivalent
to a ucual anticipation procedure trial.

One precursor to the idea of defining a state of a list in terms
of the states of the items in the list is found in Fstes (1959) . In
developing general properties of component and patiern models, Estes
suggests that one couid define a state for & one-lement paired-asso~
ciate model in terms of the numner of unlearned items in the list. The
derivation on p. 36 of his chap*ter assumes the anticipation procedure.
He shows how one can derive <he probability of a correct response at
the beginning of cycle n frem a matrix whose states are the number of
unlearned items, i e , if the list hazs M etimuli, the states are
0,1,...,M. Estes' idea for +resting the state of the list for the one-
element model is generalized in this paper to apply to any model in the
framework (Theorem L4 .5)

A secord example of the ides of esmbining states of various items
into a single state is found in Arkinson and Estes i196%) In section
5.2 of their chapter on stimulue sampling *heory, they develop the mixed

model for a two item 1list The items, ab and aec, are assumed to be

either in an unlearned state U or a learned stote L. They develop the

theory for a four-state process with states (U,Uj, (U,L), (L,U), and
(L,L), where the first position refers *o the ctate of item ab and
the second to item a¢ More will be cold ehout tnis work in Chapter 3,

p. 91L.
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The idea that presentations of different items can be represented
by different sets of transition probabilities among states of the entire
1ist of items has been, in part, adopted by Restle (1962, 1964). His
strategy-selection theory of paired-associate learning assumes that
items in a list can be confus:d in the course of learning. This confu-
sion results in a discrimination problem which is solved by discarding
strategies that confuse items requiring dissimilar responses. Restle
does not allow for different items to have different transition proba-
bilities in his applications of strategy-selection theory (cf. Restle,
1964, Sec. 5, pp. 132-14k4); however, he points out that his applications
are at best an approximation (Restle, 1964, pp. 168-171). In the final
pages of the chapter, Restle suggests the direction necessary to take
in order to square the models he uses with his theory. It is these sug-
gestions of his, rather than his original model, that resemble certain

de%elopﬁeﬁigﬂin this chapter. A more detailed analysis of strategy-

selection theory will be presented in Chapter 5 (pp.l08) of this paper.

B. Definition of Model in Framework

In the development to follow each item in a list will be required
to be in one of a number of finite states on any trial of the experiment.
The generalization from usual formulations of models will be to allow
for the possibility for some or all of the items which are not presented
on a certain trial N +to do any of the following: (1) affect response
probabilities on trial IN; (2) echange their own states of conditioning
on trial N; and (3) to affect transition probabilities of other items

in the list on trial N.
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Suppose a list of M S-R pairs (items;, denoted by

4 =(8,, 8 S

5y MJ

and a set of Q responses, denoted by

CQ = {Al, A2, I ) AQ'}

e will adopt the idea of 2 state ac @ primitive notion in the frame-
work States U and T in the one-element model, thne number of patterns

connected to response A in a two response pattern model, and U, P,

1
and R in the one-element multi-level model are agll states in the in-
tended usage of "etate" in the framework  In Definition L.1 ‘the notion
of an item scate space is presented. It should be noted that, since the
item state space is an ordered set of states, it is possible for a par-
tieular state 1o appear more than once (with a different subscript) in

the item state space

Definition 4.1

By a state space, T of an item is meant a finite crdered

1}

set of states

Tl = {Tl, Ty yTe]

=
(=%

Examples of item state spaces are ;U,L} Zfer the one-element
N
g]gao for +he N-element two-response pattern model, and

(U,P,R}] for the all-or.none mviri-ievel model presented in the

model, (C

preceding chapter Wext we :.rmalize in Definition 4 2 the notion . -

of the state space for a list of items

Definition h 2

~0
By a state space o of + list of M items with 1tem state

space T ie meant the M-feld Cartesian preoduct -

I
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= ToxeeexT

I I’
[D where "x" is the Cartesian product of sets.
|
Tor the one-element P-level model with a list of M items
| ) o
(4.5) = (B=(tp,0005) ty e (L), 1=3,2, ... , M.

| ME e

Thus if the item state space TI has L states, the state space for a
| list with M Items will have L' menmbers.
We will next define a model for the learning of a list (Definition

é 4.3). This definition will require that the stochastic process governing
state-to-state transitions among @j be Markov in a certain sense. The

| Markov restriction is not thought to be too severe because in many non-

? Markov models the state space could be expanded to make the model satisfy

| the Markov condition. Disregarding the restriction of a finite state
space for the moment, the identifiable state theory developed in Greeno
and Steiner (1964, p.3l7) illustrates one way in which this expansion“?
can be accomplished.

V Although the restriction to a finite-state model and the Markov
condition rule out certain models, like the linear model vhich requires

}é an infinite state space to satisfy the Markcv condition, generalization

of the present approach to include these models should be possible.&/

We next present Definition 4.3.

Definition 4.3

Suppose # = (S;,8,,..4,8,) 1 a iist of M items with asso-

ciated response set Q of size Q. Then M = ("&J,”UD, ‘EL) is a

i
—/ For example response probability might be used to define a state, and
operators for each item could be postulated.
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model for the learning of list mf in case;

1. There is an item state space

T = (7

1 12 Tor v

such that

¥ a1 x o xT

1 1

ig a state space for the list.af

2, %P is a set of M LM X LM square matrices, Pl, Pg,,u,, PM,
M

such that, for all i, j = 1,2,...,L and o = 1,2,...,M, the
ijth term of [%x’ namely R;J, is the probability of transi-
tion from state f} of-thé liét;%o state E} on a trial when
item %x is vresented. These transition probabilities depend
only on i, J, &, and not on the trial index or preceding

states ot the list, i.e., for all trials N; stimuli qa € %f;

3 ey
states of the list ﬁl, VJ £ Zj, and past histories of presen-

tations, responses, and states, h, we have

1] %

S Ui,N’hN!

1y sy
P.Y = PriV o,

o 3,1
3. Sﬁ ig a function which specifies, for each stimulus Si € gf,
regponse AJ ¢ 62, and state of the list T e @f,

Ong)

isi,N"‘*N

Pr{A
Ve

independent of the trial number N = Ly, 2y o

Naturally if /1 is o model we have, for 2ll o = 1,2, . ,M, i =1,

M
M

A
Y e,
=1 ¢
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and, fOI’ all j = l’ 2’000’M and 'E-}‘E ﬁ’

Consider, as an example, the one-element P-level model for a list
of M items. The state space for this model is defined in Eq. 4.5, and
the model specifies that transitions are possible only for the presented
item. Denote by t© the o component of T, where T e J. Suppose
Soz € ﬁg is presented on some trial. Then the model implies for all 'E’,

ve® with P = WP for B £ a,

1 if =1 and W =1L
-ﬁ? 0o if ta=L and wa=U
(4.6) [POt = a o
¢ if v+ =U and w =1L
lec if ¥ =U and W =U,

and, if T and W do not agree in any coordinate p with B £ ct,

—3=)
Tw
[ch = 0

The response rule for the one-element model is generally stated in
terms of a correct response and an incorrect response. Let Aoc be the
response associated with Scu and ‘Ka = (L {Aa]o Then, for all o = 1;

2,...,M, T e®f and N=1, 2,...,

- . 1 if ¢ =1L
(4.7) Pr(Aa’Nisa’N,tN) = e Py,
and, of course,

_ . 0 if ¥ =1
Pr(A@"NIS@’N’tN) i 1-g if 2 =1U.
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To further clarify these abstractions assume the one-element model
for a list with M=2. The members of of are

(L,L), where the first member is the state of 5, and the second is

the state of 82.

(4.8) P, =

and

(L,0)
1 (U)L)

(U,U)

P (Ppee0s By

learning on various levels.

(L)L)

1

0

According to Definition 4.3 we have

(L,u) (u,L) (U,0)

bilities among the M ctates of ZJ.

0

1

0 o ]
0 0

1l-c 0

0 l-c | ,

0 0 0
L=-c 0 0
o) 1 0
0 c l-c | o

One effect of the preceding definitions is to allow us to view a

theory for list learning as a set of M matrices of transition proba-

The device of dealing with

permits one to handle the possibility of simultaneous

To illustrate, suppose the all-or-none

60

milti-level model is written for a list with M=2. Then the implied
matrices P, and P, are given by Eqs. 4.2 and 4.3, The response
rule for the all-or-none multi-level model specifies that response pro-

babilities are completely determined by knowing the state of the pre-

§ sented item. In general, item dependencies implied by multi-level learn-

; ing are recorded by their effect on T e éﬁ

(U)U)) (U)L)) (L,U), and

3

) 0 £
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C. Definitions and Theorems for Presenﬁation Schedules

Now that the notion of a model in the framework has been formalized,
we move to the task of stating theorems for computing state and response
probabilities as a function of the presentation schedule. These theorems
are motivated by the idea that a milti-level model can be tested by
manipulating presentation sequences aﬁd predicting response probabilities
as a function of this manipulstion. Before stating the theorems of this
section, one more definition is néeded.

The formulation i the notion of a model in the preceding section
did not include a specification of the probabilities of being in the
various states of the list on trial one, i.e., Definition 4.3 daid not
include a start vector. In order to apply a model to a particular ex-
periment a start vector must ;ither be assumed by the model, or the
probabilities of starting in the various states must be regarded as
parameters of the model. The notion of a start vector is formalized in
Definition U4.k.

Definition L.h4

By a start vector 5)1 for a model M= (J,%P,XL) 1is meant an
LM dimensional row vector of the probabilities of being in the L
states in 37 at the start (trial one) of an experiment.
In general, denote by 5% the row vector of probabilities of being
in the various LM states on trial N of an experiment. 5& can be

. . 4
viewed as a random variable whose value depends on the start vector Eqs

the matrices P , P and the presentution schedule.

1’ M’
Next we present Theovems 4.1, 4.2, and 4.3 which give general

methods for computing 5& as well as response probabilities on trial N
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under some frequently employed presentation schedules. The first theo-

rem shows how to compute for a fixed presentation sequence of

_)

Py+1
stimuli for the first N +trials. Theorem 4.1 should be regarded as a
fairly obvious extension of a standard theorem in Markov chain theory.

The theorem from Markov chain theory asserts that if P is the transi-

tion matrix for a finite state Markov chain, the probability of being ia

state jJ N +trials after being in state i is given by the ijth term
of PN (cf. Kemeny, Mirkil, Snell, and Thompson, 1959, p. 386). Theo-
rem 4.1 is a special case of the analogous theorem for inhomogeneous
finite state Markov chains (i.e., chains whose parameters are trial

dependent ).

Theorem 4.1

Suppose a list, ,Jz of M items, a model 2? = (87,50,36)
with an associated start vector 51. Also suppose the presentation

sequence Sy , S5, «v. , S5, for Sq € L, i= 1, 2, ... , N,

1 2 N i
is ad:rinistered for the first N +trials. Then the row vector of
probabilities of being in the various states of the list on trial

N+1 is given by

(4.10) by =Dy I P

Proof

The proof proceeds by induction on N. Clearly for N =1

b, =D, P
(04
2 1 1
Assume for N -~ 1 +that
- -
p —p Pa ooolpa
N L 1 N-1

-




¥
O

e

)

' A

=

L ]

[t

N
|
(.

Then the kth term of 5&+l is given by

(k) _ < _(3) jk
P = p [P
v LB R
M
L
g
=1 1%y -1 aN

- (k)
[ P s e e E ] .
by al a

Hence
N

ey = P12 I Po |
i=1 1

Although the preceding theorem is not suited for hand computation
of any but the most simple models with M and L small, it could pro-
vide a useful tool in computer simulation of more complex multi-level
models.

M though this theorem and the ones to follow concern how to derive
the probabilities of being in the various states given various presen-
tation sequences, it is quite easy to use these results to get response

probabilities. Suppose is the sequence of presentations for the

°N-1
first N-1 trials; then, for all S, € 4 Ay e 4 % ed, and

N=l, 2, LI ,

M

Pr(A, .|S

)Pr(E;

T
4
5,08, w Swe1) QE& Pr(a; nI8; w b, w Sn-1 ! oy-a)

(4.11) M
k)

L
4
kZi Pr(a; l8; w %,w) Py

The first term is given by af> and the second is the kth component of 5&
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calculated by Theorem 4.1. In later theorems E(ﬁ%) will be computed
under various presentation schedules. If J is a presentation schedule
(see Definition 4.5), we have

-M

L -
(4.12) EJ(Pr(Aj,NISi,N)) = kgl Pr(Aj,lei,N, tk,N)EJ(

o

B

Next we define the notion of a presentation schedule generator
(p.s.g.) and state a lemma from Theorem 4.1 for finding E(ﬁ%) under an
arbitrary p.s.g.

Definition 4.5

Suppose a list of M items, ,JZ By a presentation schedule
generator, J, is meant a rule which specifies the following prob-
abilities:

1. For all presentations on the first trial, 8, e J, Pr(ﬁx’l) is
specified.
2. Let ‘J% denote .J% oo xj7 and let hN denote the history of
~-times

the first N presentations and responses. Then, for all

5 all histories h., and all S, ¢ A

N € “w N’

Pr(Sy e |3y By

is specified.
Thus a p.8.g8. is just a rule for determining the probability of any
sequence of presentations through the first N trials (possibly contin-

gent on the subject's responses) for N =1, 2, ... .

Lemma 4.1
Suppose a p.s.g. J for a list of M items and & model 27

with associated start vector 51. Then the expected probabilities

6l

b (e 2
x " 2

®
« "2




of being in the various states of the list on trial N (expectation with

respect to J) are given by

N-1
- -
(4.13) E;(py) = Zj (5, .|_|l PO"i)Pr(So‘l’ e B l)
SN_l€ N"'l 1= -
where SN-l is expressed as
i

S, 5 eee 3 8

al aN‘l .
Proof

With Theorem 1 and the treatment of 5% as a random variable in

mind, the lemma follows from the fact that if X and Y are discrete
random variables

E(X) =) E(X|Y=y)Pr(Y=y) ,
y

where the sum is over y such that Pr(¥Y=y) > O I

Next we imtroduce the notion of a "Bernoulli presentation schedule.”

TN e,

A theorem is then stated for computing EB(§%) for a Bernoulli p.s.g. B.

It turns out that for computational purposes it is useful to test a

L S W

multi-level model with a Bernoulli presentation schedule. If this sched-

ule 1s used, an expected operator or average transition matrix can be

R s ol

used to get state probabilities (Theorem 4.2), and a theorem which per-

Komwmn rivic-vmsi ¥

mits lumping of the average matrix (Theorem 4.5) under a further restric-

E tion greatly reduces the number of states in this matrix. These two

’ theorems are used together to derive stochastic matrices for the all-.r-

j none multi-level model and for Restle's strategy selectlon theory (Chapter
} 5, p. 103 and p. 115, respectively).

J
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Definition L.6

Suppose a list of M items ,46’ By a Bernoulli presentation

schedule is meant a rule J which selects item Soc € j to be pre-

sented on Trial N with probability T independent of N and

the previous item presentations and responses, & =1, 2, ... , M.

That is, for all & =1, 2, ... , M, N = 1, 2, eee
Pr(qj’N) = Ty,
independent of N and the history hn-l" Jf course
M
Ty = 1
a
=1

Theorem 4.2

Suppose a list of M items, a model n= (g, 7L) with

associated start vector ff)l and a Bernoulli p.s.g. B =

[nl, Ty eee s nM}. Define
5
A = x, P
g KK

to be a matrix of "average" transition probabilities effective on

any trial. Then

N

Proof

The proof proceeds by induction on N. Tor N =2,

[i]

= = =
EB(pZ) rclpllPl o, + nMplEPM

u

M
-3 >
b, Yom. P = DA
lk=lkk 1
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Assume

= = aN-1
Ex(Py) =P/ A

Then for all strings O = (al’ Oy veo s aﬁ) of the first M integers

we have

- -
EB(pN+l) = § pl(Pa oo Py )na eelly

1w A
- ¥ [ (By oooPo Iy ool 10 P,y my, )
(@, 0 ) A “n-1"d S

- FATA =BT |

This theorem could alternatively be proven as a consequence of the
theorem which states that the expectation of a product of independent
random variables is the product of thelr expectation. Then the work
would be to show that the conditions of thils theorem are satisfied for
matrix random variables and a Bernoulli p.s.g. along with the model 2&

Tr  he mathematical learning theory literature, the two most fre-
quent experimental paradigms for list learning are the anticipation pro-
cedure and the R-T procedure. The anticipation procedure presents no
difficulty for the framework. Thus an anticipation procedure for a list
of M items could be defined in terms of a p.s.g. which selects any of
the M! orders of the M items with probabllity l/M! at the start of
each cycle.

The R-T procedure, however, presents slightly more difficulty for
the framework. The problem is that a trial in the R-T procedure does
not fit the definition on p. 54 of this chapter. Instead of the stimulus

being presented for a response followed immediately by a presentation of
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the S-R pair, the R-T procedure groups the R-trials (presentations
of S-R pairs), groups the T-trials (presentations of the S members
for a response), and alternates blocks of R and T tria.s.

There is a fairly simple and natural way to extend the framework to
handle the R-T procedrre as well as several other situations to be
mentioned. Suppose an event, Ev’ is defined to be any occurrence in
an experiment which a theory says may affect the state of the list. Thus
far, theories have been restricted to those which specify that the only
events are presentations of stimuli for an anticipation trial, i.e., thus
far, transitions among states of the list are permitted only upon the
presentation of a stimulus. We could associate a transition matrix Pv
with each event Ev' Then, if event Ev cccurs at some time point N

in the experiment, Pv would be applied to 5% to give 5%+l’ i.e.,

- o

Now the R-T procedure can easily be accommodated within the frame-
work. Acsociated with each type of R=trial, Rv’ iz a matrix Pv and

with each type of T-trial, T

vio @ matrix Pv" Thus during a T

cycle the associated item matrices for T-trials are effective, and dur-
ing R-trials the matrices for R-trials on items are effective. Viewed
in this way, the issue of learning on test trials 1is whether or not the
transition matrices for T-trials are diagonal (s on the diagonal and
Os elsewhere).

Other places where this generalized notion of event might prove use-
ful are as follows. Peterson and Peterson (1962) had subjects count

backwards between an R-trial and a T-trial to study memory. If models
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for the Petersons' experiment were written in the framework of this
chapter, one could define a counting event, EV' Presumably the associ-
ated matrix Ew would tend to shift an item into a forgotten state.

A second possible use of the generalizatlon of event in the frame-

work would be in the optimization work of Crothers (1965). Crothers

considered two types of trials (modes of presenting material to be learned)

and the paper concerned finding a solution to the problem of the optimal
scheduling of these trials under various constraints. To solve this
problem, he associated a transition matrix with each type of event; a
matrix was assumed to be effective on any trial when 1ts associated event
occurred. The members of the state space, however, were not the states
of the list but were states of a particular item.

T+t would lead us too far astray to develop additional properties of
presentation schedules within the multi-level framework. The preceding
comments should indicate the way to incorporate a p.s.g. into the frame~
work.

Before leaving the section on computing state and response probabil-
ities for multi-level models, there 1s another property of some models
that can simplify derivations. If the matrices in @D commute, computa-
tions from a model are simplified (Theorem 4.3). TFirst, we formalize

the notion of a commutative model in Definition 4.7 and then state Theo-

rem 4.3.

Definition 4.7

Suppose a list of M items and a model 7% M is said to be a

commutative model in cese, for all @,B =1, 2, ... , M,
[Pa.lPB = [PB.U?a L
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Examples of cormutative models are the one-element P-level model
and the all-or-none multi-level model. The former is commutative as a
consequence of the property that each item in the list is learned inde- &
pendently. To see this effect on the matrices, consider the P-level
model for M = 2. We may compute ¥,‘P, and P,-P;, where P, and P, !

are given by Egs. (4.8) and (4.9) respectively. The result is s

1 0 0 0

c 1l~c 0] o /
P2 =Py 7 0 1-c 0

ng c(l-c) c(l-c) (l-c)g_ :

Theorem 3.3 suffices to prove that the all-or-none multi-level model is
commutative. The appropriate matrix multiplication for M =2 is pre-

sented in Eq. (4.4).

Commutative models make a strong prediction that the order of pre- ;%
senting stimuli does not matter. This is shown in Theorem k4.3. cj
Theorem 4.3 wj

Suppose a list of M items, a model 7N with associated start
vector 53. Suppose 27 is a commutative model and that, for
a=1,2, ... , M ka Sa items are presented in the first N

trials, i.e., oy
M

k = N . < -
=] o

Then §%+l is independent of the order of presenting the items.

Proof i

From Theorem 1 end repeated use of commutativity of the members of ZP @ll
we have, for any presentation order, &
|
k. k m!l
: - I~ P kM |
(Ll'-lé) pN"‘l - Pllpl [PE o 'iPM H .
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D. Reduction of the Cardinality of Models

Before turning to specific applications, one more aspect of the frame-
work needs to be developed. As the size of the list, M, and the size
of the item state space, L, increase, the size of Jﬂ the state space
for the list, increases as LM. Even for a three-stage model for a twenty-
item list o would have 520 = 3,486,784,401 possible states in its
representation within the framework. Also, working with matrices of the
order of 5.5 x lO9 by 3.5 x lO9 would tax the abilities of the strongest
computer.

There are, however, several ways to reduce the cardinality of objects
in the framework. Three of these will be developed in the next few pages.
By way of preview, the first will be to drop inaccessible states, the
second will be to break down a list iato sublists such that no item de-
pendencies (or mutual interactions) exist between zembers of ~eparate
sublists, and the third is to usc the notion of lumping states in a Mar-
kov chain (ef. Burke and Rosenblatt, 1958) to effect computational sim-
plicities in determining 5%.

The first of these has already been uged in this chapter for the
all-or-none multi-level model with M = 2. States (R, P), (P, R), (R, U),
and (U, R) were dropped in the matrices in Egs. (4.2) and (4.3). This
is because none of these states is obtainable from other states and fur-

ther have zero probability in iﬂ. With this in mind we state the follow-

ing definition.

Definition L.8
Suppose a list d of M items, and a model N= (¥, &L)

with assoclated start vector 530 Define the class of null states,
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’?'(, to be the largest subset of d such that:

.—)
For all tk € 71

l._l

5’_.(Lk)=o.

- -
2. For all tke'?(, o ¢d-7 and @=1,2, ..., M,

Jk _
g =0 .

For the all-or-none multi-level model,

7( = {(R, P), (P, R), (R, u), (U, R)}

T+ should be fairly obvious that if the state space of the list is taken

I

the preceding definitions and theorems are unaffected in content; hence,
from now on, when a model m= (J, ?’, JC) is considered, it can be
assumed that ?Z has been dropped from J

Dropping null states would be very important in situations where
learning takes place mostly at high levels, i.e., where the model speci-
fies that large collections of items change states at once or not at all.
For example, consider the one-element R-level model for M = 20. !{7 in
the associated model would be of size 2203 however, 3 - ?() would have
only two members: (U, U, ... , U) and (R, R, ... , R).

The second method of reducing the cardinality of &J (or J -7])
is illustrated by a typical P-level analysis of a paired-associate ex-
periment. In effect, a list of size M 1is reduced to M lists of size

one. This is possible since the transition probabilities and response
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probabilities for a particular item are assumed not to depend on the
states of other items in the list or even the number and order of previous
presentations of other items. Thus, items that depend in no way on each
other in their course of learning can be analyzed as though they came
from separate lists. This observation is formalized in Theorem L4.k.
First, Definition 4.9 concerning the classes of item dependencies which
a model mi~ht postulate is stated.

~ . In the definition to follow, the notion of the set of items depen-
dent on an item is developed. This idea is then used to define "level of
learning," and finally, a theorem about breaking a list into independent
sublists is stated.

Suppose ﬁy is a particular item in a list ,4ﬁ By Da is meant
the set of items in /j dependent on item ﬁu. An item SB is said to
be dependent on %x in case any one of three possibilities obtain:

i. response probabilities to S, depend on the state of %1; ii. the

B

state of S can change on trials when %x is presented; or iii. the

B

transition probabilities for SB’ when Qa is not presented, depend on

the state of S,. These noticns are formalized in Definition 4.9.

Definition 4.9

Suppose a list of M items and a model M= (&, P, X) with

associated start vector 51. For each ¢ =1, 2, ... , M, the sets

1 2 5

Qx,Iqa, and Qa are defined as follows:
i. Dé = {8y S e,j and there exists a A, ed and W, Ved

differing only in their OFh position such that

Pr(AilSB, ) # Pr(AilSB, Y .
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ii. chx = {SBS SB e,j and there exist ﬁ-), ¥ ed with 1?5 74 w—r')B such
that
UV
Py # 0)
iii. QZ = {SB: SB e 4 and there are Gz Ved differing only in

their OFh’ position, Sw €<i with 7 # Q, and 7T € TI such

u

that

Pr(%ﬁii = Tisy,N’ak) 4 Pr(Eﬁii = T]SY,N,V&)] .

Then the set of items dependent on an item %1 is defined to be

1 2 .3
Dy =Dy U Dy UDg.

Qi in the preceding definition is just the set of items whose re-

sponse probabilities can be affected by the current state of item %x;

D2 is the set of items whose states can change when S, 1s presented;

(04 a
and D5

- is the set of items whose transition probabilities can be affec-

ted by the state of %1. D

o’ then, is the set of items dependent on S,

in any of these senses.

In the next section, Definition 4.9 will be used to define a depen-
dency relation on ‘AK This relation will be extended to an equivalence
relation in order to define level of learning in terms of the partition
of 4? induced by the extended dependency relation.

Let us define a binary relation, D, on 4f in terms of the Qafso
We say SB depends on %x, written SBD%J in case SB € Qa for
a, B=1,2, ... , M. Anticipating the development to follow, it would be

a desirable property if {Qa:<1 =1, ce> M} forms a partition of ,Af

are mutually exclusive and U Dy = AE Put another way,
0 4

i.e., if the D,

L

N === 8

a

=3

4

3»
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it would be desirable if the relationship of item dependency was an
equivalence relation, i.e., reflexive, symmetric, and transitive. In this
case, as a later theorem will show, the list could conveniently be broken
into sublists, and each subject learning the list would provide one set
of data for each sublist.

Fxamples are the one-element P-level model where Qx = {ﬁx] and
the all-or-none multi-level model where the equivalence classes are the
groups of M related items.

It would be unduly restrictive to require {Dbg to be a partition
of Az Consider the mixed model (Atkinson and Estes, 1963) for the

following list:

stimulus response

ab 1
be 2
cd 3

For this case D_, = {ab, bel, Do = {ab, be, cd} and D,5 = {be, cdl}--
certainly not a partition of Aﬂ These results come from the fact that
the conditioning axioms for the mixed model require, for all stimuli x,
Di = {x} and Dz = {x}; however, Di is the set of all stimuli which
share components with x. The dependency relation is reflexive and sym-
metric for the mixed model, but not necessarily transitive. (Parenthet-
ically, one could test transitivity for such a list by manipulating
presentation sequences and observing whether preceding presentations of
ab alfect response probabilities to cd. Although this experimental
question is of interest to the author, it will not be pursued in this
paper. )
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Since it is too restrictive to assume that the dependency relation
D is an equivalence relation, we define an extension of D to an equiv-
alence relation and base an operation of breaking a list into sublists

based on this extended equivalence relation.

Definition 4.10

Suppose a list ,ég of M items, a model ?ﬁ with associated
start vector 51, and the dependency relation D induced by 7?.
Define D¥, the levels extension of D, to be the minimal equiv-

alence relation containing D, i.e., D¥ - T has the fewest members.

Strictly speaking, the preceding requires a result from set theory
to be a proper definition. Clearly, J7x AY is an equivalence relation
containing D. Hence, setting D¥ equal to the intersection of all such
equivalence relations containing D, which is easily showi to yield an
equivalence relation, suffices to establish the existence of D¥. Since
,Y is assumed finite, D¥ can be easily cbtained by construction. One
simply adds to D all pairs from ,/}{JV necessary to satisfy symmetry,
transitivity, and the reflexive property. Denote by A*%  the partition
of ] induced by D*.

To illustrate the preceding process, consider the mixed model for

the following two lists:

LIST 1 LIST 2
stimulus response stimulus response
ab 1 ab 1
be 2 be 2
cd 3 cd 3
ef L de i

ef 5
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For List 1 we have

D' = {(ab, ab), (be, be), (cd, cd), (ef, ef), (bec, ab), (ab, be),
(cd, be), (be, cd)l ;

D'*= (ab, be, cd) x (ab, be, cd} U {(ef, ef)} ,
in other words the pairs (ab, cd) and (cd, ab) have been added to D' to
satisfy transitivity; and finally
D = ({ab, be, cdl), {efl} .
However, for list two,

D" = D' U {(de, de), (ef, de), (cd, de), (de, ef), (de, cd)l ;

D"% = (ab, be, cd, de, ef} x {(ab, bc, cd, de, ef} ;

and

B = ({ab, be, cd, de, ef)) .

In other words the addition of item de +%o List 1 1s sufficlent to tie
all the stimuli in the list together in the sense of Definition 4.10.

We are finally in the position to offer a possible definition of the
notion of "level of learning" used extensively in Chapters 2 and 5. By
a level of learning is meant a partitlion of ,JZ i.e., a collection of
subsets of 4f which are mutually disjoint and exhaustive. By the high-~
est level of learning for a list and mpde1.127 is meant the finest par=-
tition (one with the most equivalence classes) cﬁ“df for which items in
different subsets are mutually independent, that is, 1f ﬁx € A C;JV and

s, ¢BCd,and if A # B, then not 5,PS; and not SgDSy. 1t will turn

B
out that Q% is the appropriate partition.

Tn the theorem to follow we will base a method of breaking a list
into sublists corresponding to the equivalence classes of A%, At +the

same time the list is broken into sublists the model 7] can be broken
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into corresponding submodels. The procedure is analogous to breaking one
long string of errors and successes into a group of short sequences, one
for each item, as 1s done in P-level analyses. The important property,
captured in the theorem, is that presentations of items outside of a
Pixed cell in A% act as "dead trials" relative to changes of state
probabilities and response probabilities of members of the equivalence
class.

Unfortunately, the theorem, although fairly intuitive, becomes very
cumbersome from a notational standpoint. Therefore, some of the notation
uced in the theorem will be defined as follows.

Let ’4& be the set of all possible presentation sequences through trial

N. Then

S b nd

N-times

For each Bi e.d‘e define .J% to be the set of all sequences of presen-

tations from Bi for the first N trials. Then

i
j =BX oce e XB .
N iN-times 1

Each sequence SN € Aﬁ can be decomposed into subsequences, such that a

particular subsequence, si represents all presentations of members of

N’

a particular Bi' Thus, for each Sy € Sy sé is a subsequence of

length p, 0<p<N, consisting only of the members of Bi listed in

o/

5 Finally, for each ¥ e v, defilne E?i) to be the set of all

NO
T e Y which agree with ¥ in coordinate positions corresponding to the

states of items in Bi’ i.e.,

T8

b
d

4
*r

i M
o—




X

(® 4 94
i i) = (0 T ed and & =% forall O such that Sy € B.)

It should be clear that for each B, € o (F(1): T e & forms a parti-

‘7 tion of df.
With these notational devices in mind, we are prepared to state the
L major theorem of this section. Theorem 4.4t asserts that the response

probabilities to an item in a particular equivalence class, Bi e:d*,

depend only on the order and number of preceding items in that equiv-

»ﬂ alence class.

Theorem 4.4

= Suppose .4? is a set of M items with model = (<, %, )

" and associated start vector 51. Let £% = [Bl, Byy +ee s Bv] be
i Y

L the levels partition of ,& induced by the equivalence relation D*,

- Then, for all Bi eaﬁ&, N=1,2, ..., Sy € Aﬁ, and respcnses

T

AJ € CL

PI‘(A = PI‘(.-"..

i
,j,N+1|Scx,N+l’ SN) J,p+l|sa,p+l’ SN) ?

[ nauasnandtm = "

for i=1,2, ... , v and ﬁa € B,

[4 f Proof

o N
[ Pra; wu Sy mao o) = _)Z Pr(Ay wunl Sy winr B Pr(Epa lsy) -
; teds

By assumption of ﬁa € B response probabilities to ﬁa depend only on

i)
. the states of items in B

1 hence we have
‘ =3 =
[ PriAy |8y, on) = 2 Br(Ay w18y wups Bpe (2)Pr(Ry,, (£)]sp)
t(1)
kw where the sum 1s over the equivalence classes E?i) induced by Bi’

. 9




i.e., the subsets J corresponding to each sequence of states of items

in Bi' The next step involves noting that for all Sy € Aﬁ,

-

. _ i
Pr(“bN+l(1)|sN) = Pr(tp‘ﬂ(i).lsN) .
This is established by summing over members of the set E&*l(i) as followss

Pr(%§+l(i)|sN) = ) Pr(ﬁ%‘sN)
wet(i)

= Y il wkl(33 :
Wet(1)  E%y ;
= L I 'TT;_Ek'](u ‘

W et(i) k'esy

Pr(E,, (4)] sp)

The last two steps follow, since the states of items in Bi caln change
only on presentations of iltems in Bi’ and, further, the transition

probabilities for items in Bi do not dzpend on the states of items not

in Bi' The reader not convinced of this should note that, for all .
8g £ By, aad any Sy € 3By, and %, Vel with 20477
Pﬁ;’_ 0 _

B .

Putting these results together ylelds »

S

PJ"(Ai,NﬂI oL, N+1’ sy)

i ‘
= Pr(a, 18y v o) |l L

The gist of this theorem is that presentation of items not in a V
cell Bi e &% do not affect the states or response probabilities of items

in Bi' Consequently, each cell of Aﬁ% can be studied as an independent h
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sublist of /dV The associated model % for the sublist corresponding

to B, e 0% will have state space T, where

gi = {t(i): t e} .

M

If B; has M, members, then 0‘73._ will have ©L © members. Finally,

the transition probabilities,

JP%"(:L)’E’(;})

o4 )

are determined from ”? since

-
Fuv
04

15 the same for all pairs w e dl(i), ¥ eJ(y).

Thus far we have dlscussed how ilnaccessible states in q’}’ (namely,
the 7( states) can be eliminated. Also we have considered how, in cer-
taln cases, a list of M 1tems can be partitioned into shorter sublists
wilth a consequent reduction in the number of states needed to characterize
the learning of each sublist. A third possibility for reducing the size
of & (or & -N or :fi for B, eﬂ’*) is to reduce the number of states
in the item state space T

I.
LM. In this sectlion we consider briefly the notion of lumping (combining)

This operation would reduce L and hence

certain of the states in . "Lumping" i1s a technical topic in the Markov
chain literature (ef. Burke and Rosenblatt, 1958; Kemeny and Snell, 1960,
pp. 132-140), and ite use within the framework is a highly model-specific
question.

The basic ildea of lumping (or combining) the states of a Markov

chain is as follows. Suppose M 1is a Markov chain with state space
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X = lx),%55 coe s xn]. et Y = {yl,yg, e ym} be a partition of X,

2’
i.e., Y conslsts of pair-wise disjoint subsets of X whose union is X.
If the state space Y forms a Markov chain, then Y 1is sald to be a

valid lumping of the sta%es in X. A sufficient condition for the lumped

process Y to represent the state space for a Markov chain is as follows
(Burke and Rosenblatt, 1958): Y dis a valid lumping of X in case, for

each yi,yj €Y
Pr(x-yj) = Pr(X'-yj)

for all X,x' € Yyo where Pr(x-yj) is the probability of transition
from state x € X to the class of states yj c X. It should be noted
that if this condition is satisfied Pr(Yi-Yj) is well defined--otherwise
it is not.

Depending on the model, this condition can be used to lump the
states in each P € % in such a way as to reduce the size of 37, In
most cases this method of reducing &Y depends on the particular model;
however, there 1s one case for which a somewhat general condition pe.,- .
mitting lumping of the states in éT can be established. In the case <0
where all M items in a list are similar in a sense to be establishel
in Definition 4.11, it is possihle to lump the states of I if each item
is equally likely to appear on any trial. This condition 1s established
in Theorem 4.5. First we formalize the notion of a "symmetric model"

which pleys a role in this theorem.

Definition 4.1l |

Suppose a list ,do of M items and a model 7] = (&, B.L).

M is said to be symmetric in case % 1s left unchanged by o
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permuting the order of stimuli listed in the state space &7:

A symmetric model has the property that all items are treated alike

by the model. By this is meant that the same set of matrices, 5? would

Nomard

be obtained for any ordering of the items in the definition of the state

i space of the list, l.e., there is a matrix in 50 assoclated with the

- first listed item in the state space, one associated with the second, ... ;
L and further, these matrices do not depend on which item is listed first,

» second, ... . As an example, consider the one- element P-level model

for a two-item list. Let S and S' denote the two items. Egs. (4.8)
and (4.9) give the two members of &P for the S'S order of listing the
- states of the ltems. It should be clear that if the ltems were listed
L‘ as SS' in the state space, the same two matrices would be obtained,
except Eq. (4.8) would apply on S trials and Eq. (4.9) on S' trials
instead of the reverse set-up for the S'S order of listing states of
items in .

All of the models considered in this chapter are symmetric models
in the sense of Definition 4.11. One type of consideration that would
tend to make a model asymmetric would be items of unequal difficulty. “To
1llustrate, consider the aforementioned one-element P-level model for
the list j= {S,S']; however, suppose S is an easier item to learn

than S'. Accordingly, let c¢ be greater than c'. Suppose the state

3 of the list 1s listed in the 8SS' order, then the resulting matrices are

i as follows:

V 1 0 0

0 1 0 0
R (4.17) P -

L o] 0 l.c

1 c 0 l~-c
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and
1 0 0 o ]
' ]l-c!
(4.18) pro- |© 1t 9 0©
0O 0 1 0
0 c' 1l-c' |

However, if S' 1is listed before S in , the resulting matrices are
1
0

(4.19) pr =

o + O
(@]
(@]

0

and

Q
[
1
Q
H O O

(4.20) P =

(@)

l—cJ .

Since these two sets of matrices (Egs. (4.17) and (4.18) vs. Egs. (4.19)
and (4.20)) are not the same, the model is not symmetric. One important
thing to note about iequiring a model to be symmetric is that it places
no restriction on what types of item dependencies are possible, e.g.,
the all-or-none multi-level model is a symmetric model.

If a model is symmetric and is tested by a Bernoulll presentation
schedule with =, = 1/M for i=1,2, ... , M (see Definition 4.6),

it is possible to lump the states of the average matrix (see Theorem 4.2),

M=
g

(4.21)

o L

i

Ay )
M

8L

6
4 -




The lumping permitted by these conditions produces a partition of J]', 5

defined as follows. Suppose a list, 4& of M items with item state

space Ty = {71,12, TL] . Then é the counting partition of 07,

is defined as follows:

(L.22) 5 = {e = (el,ez, cee eL): e, is = number between O and M
representing the number of items in state T, for

-

L
i=1,2, ... , Ly and Zei=M].
=

Actually E itself is not a partition of ¢7, but corresponding to each
e e f, there is a subset e of J whose vectors have e items in
state T, (i =1,2, ... , L). It is these subsets, e, which form a

partition of 47 and correspond to the states of the lumped process pre-

sented in Theorem 4.5.

Theorem 4.5

Suppose M= (J, zb,of) is a symmetric model for a list of M
items. Suppose that items are presented with a Bernoulli presenta-
tion schedule with T, o= l/M for 1 =1,2, ... , M. Then the
Markov chain wilh state space &T and stochastic matrix given by

Eq. (4.21) lumps to a Markov chain with state space g

Proof

The proof proceeds by using the Burke-Rosenblatt criterion discussed

on p. 82 of this chapter. Let e and e' be any two sets in f Then,

for all ?i’?j € e, we have

(4.23) Pr(E;-e') = Pr(f}—e') :
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Eq. (4.23) comes from the fact that M is symmetric. That is

M
Pr(T.-e') = Pr(T.-e'l| S, )Pr(S T.)
( i kzi ( i \ k) ( k| i
1 =
= -1\71 Pr(ti—e ‘Sk)

M= R

*
Pr(T -e‘[Sk) ,

- Lo

k=1

*
where ©  is the vector corresponding to EZ when the order of items
in the state space & is permuted to list items in state T, first, in

s second, ... , and items in 23 last. Since the model is symmetric,

the resulting set of matrices ﬁp* is the same as 59 and hence the above

!

equation holds. A similar argument implies
M *
Pr(t.-e') = L Y Pr(t -e'l|S,) ,
J Mz k

and hence Eq. (4.2%) follows. This result establishes that the Burke-
Rosenblatt criterion holds; and hence, the lumping of éf to é; is
valid. ||

Next, we indicate how this theorem, along with Theorem 4.2, might
be used in the analysis of a particular symmetric model. Theorem 4.5
and Theorem 4.2 are used in several places in Chapter 5 to derive parti-
cular models from a general model in the sense of Definition 4.3 (see
pp. 112-117 for Restle's strategy-selection theory). Consider the one-
element P-level model for M = 2. The two matrices, Pl and Pg, are
given by Eqs. (4.8) and (4.9). Suppose a Bernoulli presentation schedule

1 2

with n, =%, =+ (see Definition 4.6), then A,, for Theorem 4.2, is
2

as follows:
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(L,L) (L,U) (U,L) (u,U)

(L,L) | 1 0 0 0
(L,U) | 3¢ 1-ic 0 0

2 (U,L) | 3¢ 0 1-Lic 0
(u,u)] © %C Se l-c | .

Since the model is symmetric (see p. 82), we can use Theorem 4.5 to
lump the state space J = ((L,1), (L,0), (U,L), (U,U)}. The counting

partition, éi is given by
(4.25) € - ({(L,1)}, {(1,1), (U,L)}, {(U,U)})

(denote these three sets by es5s €5 and ey respectively). Using
Theorem 4.5, we obtain the following stochastic matrix for the lumped

process with state space &i

€ € o

P -

es 1 0 0

(1.26) 12\; = e ke 1-le 0
eo O (] l-c °

This derived matrix can be used as a Markov model to describe the
error-success process on the pair of items {Sl,Se) under a Bernoulli
presentation schedule with ny =N, = 1/20 A model for error-success
sequences is conventionally displayed as a transition matrix among theo-
retical states along with a column matrix of the probability of a correct
response given a particular state (ef. Atkinson, Bower, and Crothers,

1965, pp. 89, 253, and 305). Accordingly, the model for error-success
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sequences on [Sl,Se] derived from the one-element P-levei model is
displayed in Eg. (4.27) as follows:

s el %104 S0,ntl Pr(correct|row state)

e — — e —

2,n 1 o) 0 1
(4.27) el n |2 1-3c 0 1(1+g)
eO,n 0 c l-c i g s
| _ -

where g 1is the probability of a correct response for a presented item
in state U. Tt is cf some interest to note that the model in Eq. (4.27)
is formally identical to the two-element pattern model axioﬁatized by
Suppes and Atkinson (1960, pp. 14-1T7). The equivalence comes from inter-
preting the stimuli Sl and 82 as the two patterns. The Bernoulli
schedule employed guarantees that each stimulus (pattern) is sampled on
each trial with probability 1/2. It is interesting to note that Suppes,
et al. (1962) 1lumped the four-state matrix for the two-element model to
one equivalent to Eq. (4.26). The preceding observations suggest that,
if the particular stimulus giving rise to an error or Ssucceéss on trial n
is suppressed in the level of analysis corresponding to the analysis of
the error-success process on M items for a Bernoulli presentation sched-
ule, then the resulting model bears a resemblance to an M-element pat-
tern model. However, in the case of more complex multi-level models

than the one-element P-level model, it is possible for "patterns”
(stimuli) to change their states when not "sampled” (presented).

One final comment about the model represented by Eq. (4.27) is

needed. Transitions from state e to e

1 have different probabilities

2

following an error than following a success. This is because an error in
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)

e implies the unlearned item has been sampled; whereas, a success in

1

e does not determine the state of the presented stimulus. This feature

1
is shared by the two-element pattern model of Suppes, et al. (1962).
Although analyses of the two-element model can be found in the literature
(cf. Bower and Theios, 1963), in general, there may be more than two iltems
in the list. When M > 2, analysis of the resulting model (obtained by
Theorems 4.2 and 4.5) is best done by computer.

Bernbach (1966) has proposed a computerizable scheme for analyzing
Markov models. To use Bernbach's scheme, it is necessary to expand each
state into an error and a success state. When this expansion 1s accom-
plished, the differential probability of learning after an error oOr suc-

cess is embodied in the matrix. To illustrate, Eg. (4.27) can be so

expanded; the result is as follows:

e ei e? eg eg Pr(correct|row state)
e, | 1 0 0 C 0 1
ei’ A (1-a)g' (1-A)(1-g') 0 0 1
(4.28) e [e (1-e)g' (l-c)(1-g') O 0 0
Slo  ea clig') (ele (1-e)(1-@) 1
E
eq |0 c& c(l-g') (1-c)g (1-c)(1-g) o |
where g' = 4(l+g) and
(4.29) A= Pr(ez,n+l|el’n, €, = 0)
- 8.
T l4g S
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Bernbach's scheme could be directly applied to Eq. (4.28) to generate the
statisties for the error-success on the item pair (Sl,Sg].

In‘the next chapter we present some detailed analyses of several
models, using the theorems and methods developed for the framework pre-
sented in this chapter. It should be emphasized that the tractability
of a model within the framework depends on the construction of clever
experiments designed to reduce the state space 57: and consequently the

matrices in j? to manageable proportiouns.
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CHAPTER 5

APPLICATIONS OF THE FRAMEWORK

Tn this chapter several applications of the preceding framework will
be presented. It 1s hoped that these examples will illustrate the flex-
ibility of the approach to the problem of levels of learning presented in
Chapter 4. The framework is applied to the mixed model, the all-or-none

multi-level model, and Restle's strategy-selection theory.

The Mixed Model

Atkinson and Estes (1963) develop the mixed model for the learning

of the following miniature list:

Stimulus Response
ab 1l
be 2

The assumptions are that each pattern is in a state U or state L,
where I 1s an absorbing state, and items are presumed to start in U.
Responses to an item in U are governed by the stimulus components in
the sense that if a pattern is in L, then its components are assumed to
be connected to the response associated with that pattern. Thus, if ab
is in U and bc 1s in L, the probability of response 1 to ac is
1/2 x 1/2 + 1/2 x 0 = 1/k, where with probability 1/2 the S uses
component a, which is unconnected to either response 1 or 2, and with
probability 1/2 he uses ¢, which is, by assumption, connected to re-
sponse 2. The one-element P-level model is assumed to govern the learn-

ing of patterns, hence dependencies among items are produced only by the

o1




response rules which are based on the conditioning of common components.
The autnors assume a Bernoulli presentation schedule (see p. 66, Chap-

ter 4) with n = 1/2. They derive a sort of "average" matrix of transi-

tion probabilities among the states of the list, (U, U), (U, L), (L, U),

(L, L). It is as follows:

(L,L) (L,U) (U,L) (U,U)
(L,L) 1 0 0 0
(5.1) (L,u) 5c l-ic 0 0
(u,L) e 0 -3¢ 0
(u,U) 0 Le Ze 1 - c| -

This matrix is raised to the nth power to get state probabilities, where
n indexes presentations of either stimulus.
For the record, the response probabilities given the item presented

and the state of the list are as follows:

Pr(Al) Stimulus presented State of list
1 ab LL
1 ab LU
1/4 ab UL
(5.2) 1/2 ab uu
0 be LL
3/4 be LU
0 be UL
1/2 be uu
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Now let us.analyze this example within the framework of the

ing chapters. The list, ,f{ consists of two members, ab and bec.

The response set A consists of 1 and 2. The item state space TI =

{u, ). {7= T x T. Zp consists of the following two matrices, where

preced-

ab = 8, and bec = §,,
(L,L) (L,U) (U,L) (u,0)
(L,L) 1 0 0 0 i
(L,U) 0 1 0 0
(5.3) P, =
(U)L) c 0 l -¢ 0
(U)U) 0 c 0 1l -c
— -
and
(L,L) (L,U) (U,L) (u,U)
(L,L) 1 0 0 0
(L,U) c l-c 0 0
(5.4) P, =
(U:L) 0 0 1 0
(U)U) 0 0 c l -¢c .

The response rule ¢Kf is presented in BEq. (5.2). 51 = (0,0,0,1), and
D = ({ab, be)) (see p. 76, Chapter L4).

The model M = (J,P,A) is a commtative model since

i 1 0 0 0 |
(¢ l-c 0 0
(5.5) Py By = ByBy = | ; . .
B o2 c(l-c) c(1l-c) (l-c)e_ .

Portions of this analysis are reported in Batchelder, Bjork, and
Yellott (1966, Ch. 8, problem 8.G.2).
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Next we apply the theorems of Chapterl to analyze the mixed model in

terms of the framework. First, suppose kl Sl and k2 S2 presentations

in any order for the first kl + k2 = N trials. Then, according to
Theorem 4.3 for commutative models, we have

k, k

= o~ 1.2
Py = PPy P

1 0 0 o |
0 1 0 0
= (0,0,0,1)- ky k)
1-(1-c) 0 (1-c) 0
k k
0 1-(l-c) * (1-¢) *
— =
1 0 0 0
k k
1-(1-c) 2 (1-c) 2 0 0
0 0 1 0
k k
0 0 1-(1-c) 2 (l-c) ©

k k k k
] ([l-(l-c)] 1[1-(1c) 21, [1-(1-c) T1(1-c) 2,

k k k. +k
2 1 1 72
[1-(1-¢) “](1-c) ~, (1-c) ) .
Response probabilities can be easily determined using Eq. (MJJ) and the
response rules of Eq. (5.2). Comstructing an experiment by varying the
presentation order of the Sl and S, stimuli would provide a strong
test for the mixed model. -

Next we consider o Bernoulli presentation schedule with =t = Pr(Sl). -

To use Theorem 4.2, we first compute &h. The result is

oh
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i 1 0 0 0
(1-n)ec 1-(1-n)ec 0 0
| (5.7) b = |
ne 0 l-me 0
0 ne (1-n)ec (1-c) | -

Now we use Theorem 4.2 to determine Eﬂ(5%+l). The result is

] En(5%+l) - EEAE

j i . 1 0 0 0 ]

: 1-[1-(er)e ™ [1-(rem)el” 0 0
(5.8) = (0,0,0,1)- -{se)! ° (we)” i

! 1+(1--c)N [l-(l-n)c]N (l-:tC)N (l"C)N

! [1-(1-n)e ]V -(1-¢)¥ ~(1-c)"

. -[L-ite ] i

i

(14 (1) [1-(1em)eF[1one]", [2-(Len)el™ (1-c)Y,

(1ne)¥- (1-0)F, (1-0)) .

Response probabilities are easily determined using Eq. (5.2).

- The tie-in to Atkinson and Estes' analysis comes from noting thet

'q for n = 1/2 Eq. (5.8) reduces to the matrix in Iq. (5.1); i.e., A%

is Eq. (5.1). Theorem 4.2 provides a justification for considering povers
of this matrix to get state probabilities under the @ = 1/2 Bernoulli
presentation schedule. Atkinson and Totes!' choice of a single matrix
determines the unit of analysis for the miniature list to be the error-
success process on the pair. From this they are able to show that per-

formance prior to the last error on the pailr falle in the interval
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:

(1/2, 5/8). This is because the stimulus not responsible for the last
error can either be learned or not prior to the last error on its part-
ner. Then the response rules specify the end points of the above inter-
val.

The method of analysis proposed in this paper has the advantage
that the items ab and bec can be analyzed separately. One consequence
is that the probability of an error response prior to the last error on

a particular item will be an increasing function of the trial index;

i.e., if n indexes the presentations of ab, Pr(xn = llL >n) is an
inereasing function from a value of 1/2 to 3/4. This is because the
mixed model assumes that learning the patterns takes place independently
so, as n increases, the probability that be 1is learned increases with
consequent negative transfer to ab. This result comes from the analysis
in this paper by noting that, under the Bernoulli presentation schedule

with n = Pr(ab),

Pr(f&=(U,L))

Pr(B, = (U,L)| T = u) = — -
Pr(tN=(U,U))+Pr(tN=(U,L))

(5.9)

()™ @)t

- - 2
(l-Jtc)'N L

where the appropriate probabilities from 51%?’1 in Eq. (5.8) are in-
serted into Eq. (5.9). Eq. (5.9) tends to 1 as N increases. Since

Ly > N (last error on ab > N) implies

€& € {(U:U)y (U)L)} ’

$
the assertion of the preceding paragraph follows.
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Finally, the generalization from =n = 1/2 to =n € (0,1) permits
an additional powerful test of the model. Depending on the value of ¢,
the probability of a correct response to item bc could even decrease
for large values of the parameter =n. Using the response probabilities

from Eq. (5.2) and Eq. (5.8) yields

Pr(A = l-[l-[l-(l-n)c]N3 + -};{[1-(1-n)c]N - (1-c)N3

2,N+lis2,N+l)

+ L(1-c)"

1 - f; [1-(1n)el™ + 3 (1-¢)V .

The preceding remark can be illustrated by plotting PI'(A.2 ) for

S
,Nl 2,N
n = .95 and c¢ = .5. This is shown in Fig. 5.1.

8

5 6 7
Trials (N) on Pair

. 5.1. Probability of correct to S
t = .95, ¢ = .50,

5 for mixed model,




This concludes the section on the applicability of the framework

to the mixed model. Of course the framework could be used to get results
for other miniature lists. To recapitulate the advantages of applying
the framework to the analysis of the mixed model, we first note that
properties of the model such as commutativity are utilized by the frame~
work (Eq. (5.6)). Second, results from a generalized (x # 1/2) Ber-
noulli presentation schedule fall directly from Theorem 4.2 (Eq. (5.8)).
And finally, statisties involving response probabilities to a particular
stimlus (Sl or S2) are easily obtained (Egs. (5.9) and (5.10)).

Of course these results could be obtained without recourse to the frame-
work, but the compatibility of the framework and the model suggests that
there are dividends to be gained by an axiomatization of a model in
terms of Definition 4.3. Next, we turn to &n analysis of the all-or~none

multi-level model for M = 2.

The All-or-none Multi-level Model (M = 2)

Assume a list of pairs of related items for which related pairs are

assigned the same response. For example,

Stimulus Response
ABC 1
ADE 1
FGH 2
FIJ 2
KIM 5
KNO 5

o8

e
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might be such a list with three sublists of size 2 fitting the above

R Senmbony |

[ criterion. In Chapter 3, the all-or-none multi-level model for learning
such a list was axiomatized. The analyses of the model in Chapter 3

} were restricted either to general theorems (Theorems 3.1, 3.2, 3.3) or
to the special case where c¢ =r (Table 3.2). In this section a fur-

b ther analysis of the model in terms of the framework will be presented.

- For the all-or-none multi-level model (M = 2) we have TI = {u,P,R},

- J=-=7xT, and A ={ (U,R), (R,U), (P,R), (R,P)}, where /A 1is the

3 set of null states (Definition 4.8). Thus, the state space for the

’

analysis is J =& - = {(u,0), (U,P), (P,U), (P,P), (R,R)}. @P =

[Pl,Pel, where

(R,R) (p,P) (P,U) (U,R) (U,V)

(R,R) [ 1 0 0 0 o
(P,P) c l-c 0 0 0
(5.11) P, = (P,U) c 0 l-c 0 0
B (U,P) r B 0 l-r-p 0
(U)U) r 0 p o) l-r-p
] and
(R,R) (?,p) (P,U0) (U,P) (U,V)
- (R,R) [ 1 0 0 0 o ]
(5.12) (P,P) c l-c 0 0 0
) P, = (P,U) r 1) l-r-p 0 0
(u,P) c 0 0 1-c 0
(U, U) r 0 0 P ler-p| .
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Tt should be noted that the preceding state space and matrices really
apply to the sublists consisting of pairs of related items, i.e., A%*,
the levels partition of ,JZ consists of two-item equivalence classes
( Theorem 4.4). For example, the levels partition for the six-item list

on p. 98 is
«O% = [ {ABC,ADE!, {FGH,FIJ)}, {KIM,KNO}!) .

The response rule &L asserts that responses to items in state U are
correct with probability g and incorrect with probability 1 - &;
whereas, responses to items in states P and R are always correct.
Finally, the start vector 51 = (0,0,0,0,1).

The model, ”L is commutative in the sense of Definition b,7. This

fact can be seen by noting

2 0 0 0 0

:L-(:L--c)‘2 (:L-c)‘2 0 0 0
(5.13) B P, = Pyl = | cH(l-c)r p(l-c) (1-¢)(1l-r-p) 0 0

e+(l-r)r p(l-c) 0 (1-c){1-r-p) 0

i r(2-r) P p(l-r-p) p(l-r-p)  (l-r-p) 2_

Now to apply Theorem 4.3, let us assume kl Sl and k2 82 presenta-

tions for the first N trials on a related pair of items [8182], for

1 30) + ) L 503,

1, wa) = Py P Y cheg

~+2) | A1

)
+ gl'pN+l pN+l] H

Pr(A S

1,1\I+1l
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[ 2 ¥ N gy A

(1)

where Pyl is the probability of being in state i

after the specified Sl
to states as follows:

Now Dy Theorem 4.3

— - k, k2
P = PPy P
1 0 0 0 0
k k
1-(1-c) ¥ (1-¢) T O 0 0
5 5
= (0,0,0,1) ¢ 1-(1-c) 0 (1-c) 0 0
k)
B A 0 (L-r-p) 0
1 1 K
1
i By 0 A 0 (1-r-p) |
(5.15)
1 0 0 0 0
k k
1-(1-c) @ (l-c) 2 0 0 0
5
. B A (1-r-p) 0 0
2 2
5 5
1-(1-c) 0 0 (1-c) 0
ko
i B, 0 0 A, (1-r-p)
5 5 &y
= (B1+A132) + (l-r-p) Bg’ A1A2, Al(l-r-p) , A2(l-r~p) ,
k. +k
172
(l'r‘P) ) )
where
. k-1 k-1
A = s ((2-c) - (1-r-p) = 1},
and
ky
B, =1-4 - (L-r-p) = .
101

on trial N + 1
and 82 presentations (we are assigning numbers

l"(R:R): 2'(P:P): 3'(P:U): u'(U:P): 5'(U:U))-




The appropriate §§i% terms in Eq. (5.15) can be substituted into
Eq. (5.13) to obtain response probabilities as a function of ki, ky, ©
p, r. An experiment in which the presentation orders of the Sl and 82
items are varied in position and in number should provide a strong‘test
for the all-or-none multi-level model.

Next, suppose a Bernoulli presentation schedule (Definition 4.6 )

with =« = Pr(Sl). Then from Theorem 4.2,

1 0 0 0 0
c l-c 0 0 0
n(l-c)
(5.16) A =|mcH(l-n)r (1-n)p + 0 0
(L-n)(1-r-p)
n(l-r-p)
nr+(l-n)e np 0 + o)
(L~ )(1-c)
r 0 np (L-m)p 1l-r-p| -

Aﬁ could be raised teo the Nth power to get state and response proba-
bilities for trial N. The result will not be presented here-

The all-or-none multi-level model is a symmetric model (Definition
4.11). Hence, Theorem 4.5 can be used to lump A% into the states

r, = ((RR)), T, = ((p,P)], Ty = {(p,u), (u,P)}, T, =((U,0)]. The

result is
~ Tl T2 T5 Th _
Tl 1 0 0 0
T2 c l-c 0 0
(5.17) A =
2 T, [ 2(r+e) lp 1-%(r+etp) O
T’_" B r O p l-r—p_ o
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The response probabilities for this chain are as follows:

(1 for T a T
| or 4 and
_ L
(5.18) Pr(xN—OITi —<2(l+g) for Ty
\g for Th .

Since Tl and T2 are both perfect performance states in Ay,

there 1s a simpler equivalent three-state model. This is glven by

) Wy W, Wy i Pr(xn_= olrox_v state)
Wy 1 0 0 1
(5.19) A%'_ = W, | (r+eip) L-i(r+cip) O L(1+g)
W5 i r P l-r-p_ i g i ’

vhere W, = [$1JT2]’ W, = {?3]’ Wy = {Th]' Aé i5 a two-stage model
(cf. Bower and Theois, 1964). Analysis is facllitated by expanding W,
into an error and a success state (see p. 88, Chapter 4).

A% represents the three-state stochastic matrix that corresponds
to the stochastic model govening the error-success process on the item
pair for a Bernoulll presentation schedule with =n = 1/2, l.e., each

error-success protocol for the pair of items, S is a sample path

17 S
from this process. Thus Aé represents a particular stochastic process
derived from the all-or-none multi-level model under the boundary con-
ditions of =n = 1/2 and the level of analy~is chosen as the palr of
items. Without dwelling on the point, there is a sense in which the

framework provides a method for axlomatizing a theory for list learning

in such a way that a particular model can be derived in accord with the
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boundary conditions of the experiment. This property is a feature of
theories in physics, e.g., Newtonian mechanics.

An additional point can be made about a model viewed in terms of the
framework. The question of whether a theory is identifiable in the sense
of Greeno and Steiner (1964) can not be answered, as such, by models in
the framework. The Greeno, Steiner analysis concerns the identifiability
of a model for a particular presentation schedule and a particular level
of analysis. Thus, a derivation, such as the model represented in
Eq. (5.19) for the pair of items, provides a stochastic process (or mod-
el) which might or might not be identifiable in the sense of Greeno and
Steiner. However, some additional development of the theory of identi-
fiability is needed to apply it to a particular model, 2,’= (cff, @,af)
No atiempt to extend identifiability in the indicated direction is pre-
sented in this paper-

Similar techniques can be used to handle the anticipation procedure.
On any cycle, either the presentation order SlS2 or the order sgsl
is presented to the subject. Since the model is commmtative, the effec-
tive matrix of transition probabilities for any cycle is given by Eq. (5.13).
Since (R,R) and (P,P) are perfect performance states, the effective

matrix on a cycle is lumpable to

on T, T T, i
T 1 0 0 0
T, 1-(1-¢)?  (1-¢)® 0 0
(5.20) P, =
T5 er(l-¢)r p(l-e) (1-¢)(L-r-p) 0
Ty, L_r(?-r‘) P op(l-r-p)  (1-r-p)° |

where Tl’ Tg, T5, TM are defined iun Eq. (5.17). This stochastic matrix
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represents the model for the analysis of the error-success subsequences
F associated with whichever item appears first in a cycle. Thus, if s
is an error-success sequence for the item pair in an anticipatlon proce-
i dure, the subsequence corresponding to the even terms in s is an error-
success sequence for the model in (5.20). The response probabilities,
given state T,, are presented in Eq. (5.18).

Tn a similar manner to the way in which Eq. (5.19) represents an

equivalent model to Eq. (5.17), a three-state equivalent model (with

l states Wi,i=;,2,5) to Eq. (5.20) can be derived. The result is
1
J ] Wi Wé W3 _
Wl 1 0 0
} (5.21) Pé = W, (r+p)(l-c)+c (1-c¢)(1-r-p) 0
pa 2
: W | r(eer)w®  2p(r-p)  (Lr-p) |

Computations for this model would proceed similarly to those for the
- model in Eq. (5.19).5 The point of interest is that the models in Egs.
(5.19) and (5.21) are different models. Each is relevant to a different

presentation procedure and each applies to a different level of analysis;

however, both are derived from the all-or-none multi-level model. Next,

- we present a slight modification of the all~or-none multi-level model

~ and indicate the direction of an analysis of this model in terms of the
) framework.
- 2/ Tt should be reiterated that models derived from Theorem 4.5 generally

have differen tial probabilities of learning following errors and successes
in a particular lumped state. This model is no exception. Analysis is

- facilitated by expanding (5.2l) into a W2 error state and a Wé suce
cess state.
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Another Version of the All-or-none Multi-level Model

Thus far, we have reported an example where response probability to
an item depends on the states of other items in the list, and an example
where items other than the one presented can change their states. For
completeness we mention an extension of the all-or-none multi-level model
which displays the third type of dependency discussed, namely, the tran-
sition probabilities for items may depend on the state of a particular
unpresented ltem.

Except for one modification, the mcdel assumes the same structure
ss the all-or-none multi-level model (M = 2). The prcbability of rule
learning is assumed to be c¢ for any item presented, provided there is
at least one item in the list not in state U; otherwise it 15 assumed

to be r. For M =2 the two members of P are displayed below:

(R,R) (p,P) (P,U) (u,P) (U,U)

(R,R) 1 0 0 0 0 i
(P,P) | ¢ l-c 0 0 0
(5.22) P, = (P,U) c 0 1-c 0 0
(U,P) c P 0 1l-¢-p 0
(u,u) r 0 P 0 1-r-p | ,
and
(»,R) —1 0 0 0 0 |
(p,P) | ¢ 1-c 0 0 0
(5.23) B, = (P,U) | e D l-c-p 0 0
(U,P) c 0 0 l-c 0
(U,U) T 0 0 D ]-r'--p.J .
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% This model has a sort of proactive feature to it in the sense
that previous presentations of other items can affect the probabili-
ties of rule learning to a particular item. The model is not

commutative model. For M =2, +this is shown by computin:; P ?P,

12
and P,'P;. The result is
(R,R) B 1 0 0 0 0 .T
(P,P) 1-(1-c)2 (1-c)2 0 0 0
(5.24)8, B, = (P,U) | 1-(1-c)®  p(i-c) (L-c)(l-c-p) O 0
(U,P) | 1-(1-¢)®  p(1-c) 0 (l-¢)(l-c-p) ©
(00| 1--0)° 5% plaeer) () (erep)?
i p(c-r) |-
and
®RE)[ 1 0 0 0 o
(P,P) | 1-(1-¢)® (1-c)? 0 0 0
(5.25)B,-B, = (P,U) | 1-(1-c)® p(1-c) (1-e)(l-c-p) O 0
(U,P) | 1=(1-c)® p(l-c) 0 (l-¢)(l-c-p) O
(u,V) l-(i-r)2 p°  p(l-r-p) p(l-c-p) (1-r-p)°
;p(c—r) |
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These two matrices differ in their (5,3) and (5,4) terms.

This model, in miniature form, embodies some of the ideas currently
being worked on by G. Groen and L. Hyman (personal communication). They
are investigating the assumption that the probability a concept is learned
on any trial depends on the number of items in the list that have been
learned as paired associates. The above model reflects these considera-
tions by setting the concept learning parameter equal to one value if no
items have been learned as rsired associates and a second value if any items
have peen so learned. Further analysis of this model will not be pre~
sented in this paper. With the exception of the lack of commutativity,
the analysis would proceed along the same lines as the all-or-none multi-
level model. Next we turn to an analysis of Restle's strategy-selection

theory within the framework of Chapter L.

Strategy Selection Theory

Restle's strategy-selection theory (Restle, 1962, 1964; Polson, g
Restle, Polson, 1965) has been mentioned in Chapter 4, p. L4 and p. 65
In *his section we present one possible interpretation of his theory in
terms of the framework. As will be seen, there are two reasons why his
theory is an attractive one to analyze by our methods. The first is
that it provides a complement to the all-or-none multi-level model. The B
multi-level deel has the property that similar stimuli are paired with
the same response; whereas, in strategy-selection applications, similar
stimuli are paired with different responses. Thus, stimulus confusion

facilitates performance in the former situation and hinders it in the

latter. The second attraction to analyzing Restle's theory in terms of

the framework comes from noting that in Bestle's applications of his
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theory several approximations are made (Restle, 1964, pp. 132-1hk; Polson,
Restle, Polson, 1965). Restle is aware of these approximations and even
suggests that a completely accurate analysis of his theory would require
a complicated Markov chain analysis involving the whole set of confusable
items and different transition matrices for different items (Restle, 1964,
pp. 168-171). The method of'dealing with dependent items (in this case
confusable ones) in the framework appears to be similar to the method of
analysis Restle had in mind.

Restle applies strategy-selection theory to a number of experiments.
In applications, the theory takes the form of a finite state Markov chain.
The intermediate states of the model involve stimulus confusion or re-
sponse confusion. Since many of his applications are similar, the main
points of this section can be made in the context of the Polson, Restle,
Polson (1965) experiment. DNext, we turn to a description of the experi-
ment and model reported in that paper.

In the experiment, college students learned a l6-item paired-
associate list with 5 response alternatives by the anticipation procedure.
The stimuli were symbols such as a chess knight, a question mark, and
musical notes. The responses were common four-letter words. The major
manipulation was that 8 of the items were highly dissimilar; whereas,
the other 8 items consisted of L4 highly-confusable pairs, e.g., two very
similar Chinese words. Confusable stimuli were assigned different re-
sponses.

The model assumed by Polson, Restle, and Polson had the property
that unique (non-coufusable) S-R pairs would be learnel by a two~stage

all-or-none model (the one-element P-level model); whereas, the confusable
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twin items would be learned by a three-stage model. The intermediate
stage was a stimulus confusion stage. More specifically, the model for
SI’ SL’ where SO is an

initial unlearned state with correct responses emitted with probability

confusable pairs assumes three states, SO’

P, SI is an intermediate confusion state where correct responses are

made with probability P and coafusion respoases (incorrect responses

which would be correct for the twin) with probability Q, and SL is a

final learned state. The transition matrix for the model is as follows:

SL,n+l SI,n+l SO,n+1 Pr(correct|row state)
SL,n i 1 0 0 ] i 1 )
(5.26) S;, | @ 1-@a O P
SO,n i cd c(1-4) 1-c | i P )

where it is understood that transitions take place from SI to SL

only on confusion errors. Thus, ¢ is the probability any strategy is

selected to an item in state S and d is the probability a selected

O)
strategy is not a confusion one. Resampling of strategies 1s assumed to
take place only on errors. The mocdel in Eq. (5.26) is assumed to govern
the learning of a single confusable item, i.e., the model wnas applied to
a P-level analysis of twinned items in the Polson, Restle, Polson paper.

There are several reason why Eq. (5.26) does not adequately embody
some features of strategy-selection theory. To see these reasons, it
will be helpful to rewrite the model by expanding the intermediate S

I

state into an intermediate error state, S and an intermediate success

I)

+
state, S

T The result is
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_SL 8 8 SQ_ Pr(correfflrgw state)
s, |1 0 0 0 1
s7 | @ (1-4)a (1-d)P O 0
(5.27) N
s; |0 Q P 0 1
5o cd c¢(1-4)Q c(1-a)P 1l-c p |-
L. - L -

Strategy-selection theory postulates that once a strategy has been sam-
pled, resampling occurs only on an e€rror. Careful analysis reveals that
Eq. (5.27) does not represent this assumption in a way that keeps harmony
with the theory. To see this point, let Sl and 82 denote a pair of
confusable stimuli. Suppose a confusion strategy, hl’ is learned when
S appears. By its nature h, will produce correct responses to Sl

1 1

and errors to 82.6 Since hl was learned when Sl appeared, the sub=

ject is now in state SI for item Sl; however, only on a trial when

82 appears, hl is tried with an error, and resampling occurs, will a
transition take place from SIo The error that causes rejection of hl
does not take place on a trial when Sl is presented but on a trial when
S, appears. But (5.27) assumes that each subject-item protocol is a
sample path from this learning-only-on-errors model. The error that
causes learning is not in the protocol for Sl; and, thus, learning can
take place following a success to Sl if an intermediate 82 item

causes rejection of the confusion strategy learned when Sl was pre-

viously presented.

9/ The reader who doubts that cur treatment of strategy-selection is a
fair interpretation is referred to Restle (1964), pp. 126-127. Actually,
it is this stimulus-specific interpretation of strategy sampling that
this writer finds so attractive about Restle's theory.
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A possible way to rectify the state of affairs might be to use the
model represented in Eq. (5027) to account for the error-success process
on the pair [Sl,Sg], i.e., the level of analysis for which pairs of
items are the units. Restle (196L, p. 123) suggests this by arguing that
when stimulus generalization is considered, "the unit of analysis must be
the subset of related items as learned by a single subjecc.” If the unit
of analysis for Eq. (5.27) is the item pair, the learning-only-on-errors
assumption is no longer in question. However, suppose &h is learned on

L

a trial when Sl appears and 1ls rejected when 82 appears in favor of

a strategy which is unique to S What strategy now covers S,?7 The

1
but this

5°
answer is that Sl is thrust back to the unlearned state, SO’
has zero probability in Eq. (5.27). Polson, Restle, Polson (1965, p. 54)
point out this possibility and even note properties of the data to indi-
cate that such events did happen in their experiment.

One reasolution to these problems would be to change the transition
probabilities in Eq. (5.27). This solution seems not to be desirable
since the model already fails to reflect the nature of the intra-pair
dependencies postulated by strategy-selection thecry. A better resolution
would be to attempt to embody these dependencies in a multi-level model
written in terms of the framework. This direction is very definitely
suggested by Restle (1964, pp. 168-171). One possible model embodying
strategy-selection assumptions for the Polson, Restle, Polson experiment
is presented next.

L}, where U 1is

Suppose the item state space, T 1S tU,Cl,C

2

an unlearned state, Ci is a state where a confusion strategy requiring

I’

response i is held (for i =1,2), and L is a learned state. After
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removing null states, the state space for the list is as follows:

J = ((u,0), (¢,0,)s (CpCy), (U,L), (L,U), (L,1)) .

80 consists of two matrices, [P, and Pe; they are as follows

1

(L,L)  (L,U) (VL) (CpCy) (C1,Cy) (U,0)

-
(L,n) | 1 0 0 0 0 0
(,u) | o 1 0 0 0 0
(5.28) p, = (u,L) | ¢ 0 l-c 0 0 0
1
(ce,cz) 0 d 0 0 1-4 0
(c.,c.)] © 0 0 0 1 0
1’71 ’
(u,U) 0 cd 0 0 c(1-da) (1-e)
and
(L,2)  (L,0)  (G,L) (CpC5) (Cy,Cp) (U,U)
(L,L) 1 0 0 0 0 0
(L,U) c l-c 0 0 ¢ 0
(u,L) o) 0 1 0 0 0
(c.,c,)] o 0 0 1 0 0
_ 2’2
(5’29) Pg -
(cl,cl) o) 0 d 1-4 0 0
(u,U) o) 0 cd c{1l-d) 0 l-c | ,

where the following special assumptions have been made: (1) If an item is
presented and a confusion strategy is learned, it applies equally to both
items if they were previously unlearned, (2) if one item is learned and

the other is not, any strategy learned on a trial when the unlearned item

i5 presented is sufficient to move the pair into state (L,L), and (3) on
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an error trial to a confusion strategy, only the presented item can be
learned and, if so, its twin goes to state U. These assumptions appear
to be in the spirit of surategy-selection theory but, by no means, rep-
resent the only way strategy-selection theory could be formalized in
terms of the framework. The response rule, aZi would specify that items
in U would be responded to correctly with probability p, in L with
probability 1, and in state C€,C, the response correct for S, 1is

i"1i i

always made.
ﬂ] = (Jf, P,ﬂﬁ) is not a commutative model, since [Pl°!P2 # IPE'IPl.

The results of the matrix multiplications are as follows:

1 0 0 0 0 0
c 1-c 0 0 0 0
c 0 1-c 0 0 0
(5.30) P, P, = .
ed d(1-c) a(1-4) (1-4)° 0 0
0 d 1-d 0 0
2
c”d cd(l-c) cd(2-d-¢) (1-d)e(2-c-d) O (1-c)2 ’
1 0 ) 0 0 0
e 1-c 0 0 0 0
c 0 1-c 0 0 0
(5.31) P, P, =
0 ) 0 0 1-d 0
ed (1-4)a  d(i-c) 0 (1-a)° 0
2
¢ d cd(2-c-d) ed(l-c) 0  e(1-d)(2-c-d) (1,-c)2

The anticipation procedure requires that the two possible orders of pre-

sentation, SlS2 and S?Sl’ are equally likely. In order to apply
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Theorem 4.2 we compute the average effective matrix, A, on a cycle

(see Theorem 4.2). The result is

(5.32) A= Lp P, + %P, P

1 %2 271
(L,L) (L,U) (U,L) (C,,C,) (cy,C,)
1) | 1 0 0 0 .
(L,U) c l-c 0 0 0
(U,L) c C l-c 0 0
] (c.,c.) | <& d(2-c a(1-4) 1-4)° (1-4)
2772 2 2 5 5 5
(c,,c.) cd d(1-4) d(2-¢c) (1-4) (l--d)2
1’/ |72 2 2 2 2
(u,0) |<%a %?(5-2c-d) %?(3-2c-a) °(l‘d)é2'°"d) c(l-g)(E-c-d)

Since 7)2 15 a symmetric model, Theorem 4.5 can be used to lump A
to a four-state matrix with states T, = ((L,1)}, T, = ((L,v), (u,L)},

Ty = {(02,02), (cl,cl)], T), = ((u,U)). The result is

Ty T, T, T,
i 0 0 0
T2 e l-c 0 0
(5.33) At = (1.4} (2-2)
ed a 1-d)(2-d
| T 5(3-c-d) 3 0
T, chd cd(3-2e-d) c(1l-d)(2-c-4d) (1-c)
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The probability of correct given state Ti is as follows:

(
1 if T,
i(1+g) if T
- 2
(5.3L) Pr(xy = 0O|T,) = < 2
- 1 if T
2 p)
g if T
\ L

The model represented by Egs. (5.33), (5.34) would apply to the
error-success sequences on items S1 or SQ, which appear first on
each cycle (see p.105 of this chapter for a further description of this
level of analysis). This is because between two successive first ap-
pearances, each of the matrices, PloP2 or P2-P1, is equally likely
to be effective. Restle assumes items start in state U, so 51 =

(0,0,0,1) for this model. Since the data for first-appearing items is

Aot presented in Polson, Restle, Polson, no attempt will be made to

present statisties for this model. It should yield to hand computations

of some statistics, or it could be analyzed by computer, using Bernbach's

(1966) scheme. Intuition suggests that the pattern of predictions for
this model should conform as well or better to data as the model pre-
sented in Polson, Restle, Polson  There are two reasons for this in-
tuition: (1) items can drop from a confusion state to state U, and
there are indications in the data that this happened, and (2) the model
is an average of a convorution of two geometric distributions and a
convolution of three geometrie distributions. ©Sluce a convolution of
wwo geometrics does not do badly, it is unl ikely that the addition of
another stage will hurti prediction. The case is not, however, entirely

transparent .
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The model for the error-success process on the second-appearing
item in a cycle is slightly more complicated. This is because this item
is always different from the item associlated with the last effective
matrix, i.e., if 82 appears second on some cycle, then Pl, corres-
ponding to Sl, which appeared first, is the last effective matrix.

If one uses the average matrix, A, as in Eq. (5.33), it is assumed
not only that P1°P2 and Ee-Pl are equally likely, but also that Sl
and 82 appear equally likely and independent of whether Pl-Pe or
PQ-Pl was effective. This assumption is violated for second-appearing
items but not for first-appearing items on a cycle. There are several
ways second-appearing items can be handled, but the details will not be
presented here. One way would be to consider the arrangements PlPQSl
and P2P182, which are the two possibilities for effective matrix and
item-presentation for second-appearing items. By incorporating the
presented item into the state space (e.g., a state might be (U,L,Sl)),
a model for second-appearing items could be derived.

Additional results and statistics for different presentation
schedules and levels of analysis could be presented for strategy-selec~
tion theory as interpretated by the framework. These will not be pre-
sented in this paper. It is hoped that this section has indicated the
direction that a mathematical theory for confusion processes in list
learning might take. This section concludes our analysis of models in
terms of the framework. We have seen how the theorems of Chapter 4 can
be applied to & variety of multi-level models embodying variocus sorts of
item dependencies. The net value of the framework depends entvirely on

its ability to generate new and tractable tests for learning models.
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CHAPTER 6

EXPERIMENTS AND CONCLUSIONS

In the first part of this chapter we will discuss two experiments
that the writer has conducted to generate some data relevant to the ideas
and methods of analyses discussed in Chapters 2 and 5. Since these
experiments represent only the start of a program to pursue experimentally
the ideas in those chapters, their presentation has been postponed to
this last chapter, which is designed to indicate plans for develcping
and extending the ideas in this paper. In the last part of the chapter
we will indicate briefly some general directions that research motivated

by the ideas in Chapters 4 and 5 might take.

Experiments

Before presenting the two experi@ents, it will be useful to deseribe
the general paradigm that governs the design of both. The paradigm in-
volves list learning. The stimulus terms are composed of recognizable
components with some number N of these components per stimulus (in
the experiments to be reported, N = %). There are fewer response terms
than stimulus terms, and hence, more than one stimulus is paired with
each response. |

Some of the components making up a stimulus are unique in the sense

that they only appear as components of that stimulus, whereas other com-

ponents are shared by more than one stimulus. The major manipulation in
the paradigm is to construct stimuli and assign responses in such a way
that all stimuli sharing any component (or components) are paired with

the seme response. Thus, shared ("overlap") components should aid the
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subject in the sense that they will never lead him astray in his responses,
i.e., if the subject pairs a certain component Xx to response A and
hence says response A to any stimulus having component X, he will
always be correct. The following is a possible structure of a typical

list used in the experiments to be reported:

Stimulus Response
I Carl Stan Eric 1
n Carl Dave Robert 1
Lk Carl George Jim 1
! Jack Bill Bob 1
H Jerry Dick Pat 3
] Jerry Frank Louis 3
1 Jerry Mike Guy p)
- Tom Harry Glen 3
] etc.
- T+ should be noted that the only overlap components are Carl and Jerry;
J and, further, if the subject pairs any component with a number response,

he will get the stimulus having that component correct as well as any
other stimulus (if any) sharing that component.
The list structure for this paradigm is similar to that frequently

- employed to study concept ldentification (e.g., Atkinson, Bower, and

~ Crothers, 1965, p. 51); however, there is one escential difference in

the two paradigms. This difference is that overlep components in a con-

cept identification task are not alwaeys facilitative; that is, two stime-

! uli can share a component and yet be assigned different responses. Qur
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paradigm is even more different from that employed DYy Polson, Restle, and
Polson.(l965) to study confusion processes in paifed;associate learning.
Tn their study, stimuli sharing common components were always assigned
different responses (see pp. 109~110 for a discussion of their paradigm)o
By using the paradigm described in this chapter, it was hoped that
positive inter-item transfer within the list would result from the facil-
itative nature of the overlap components. As will be seen, this expec-
tancy was borne out in the data. Adai*“~nal motivations for the experi-
ments were to gather data relevant to the levels analyses discussed in
Chapter 2 and possibly to £it the all-or-none multi-level model to these
data. However, only some of these latter expectancies materialized.

Next, we turn to a discussion of the two experiments.

Experiment I
Method
Subjects.--The BSs were 15 male and female undergraduate and non-
psychology graduate students at Stanford University. Each S was paid
$1.50 for his participation in the experiment. The data for all Ss were
used. The initial plan was to run 50 Ss in the experiment; however,
the task proved so easy that only certain statistics, requiring many less

than 50 Ss for stability, were usable.

Apparatus and'Materialso—_Subjects were run one at a time. Presen-
tation was by hand. The E sat facing the S behind a 1 x 2 ft. screen
and placed 3 x 5 inch cards on a 3 X 8 inch ﬁetal card rack situated to
the E's right of the screen.

The materials consisted of three decks of twelve stimulus cards.
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Each card in the experiment was composed of three component words arranged
ir a triangular fashion on a card, i.e., if x,y,2 were the three com-

ponents, a typical arrangement on a card might te

The responses for a particular deck were either the numbers {3,5,7,9)
or the numbers (2,4,6,8].

The twelve stimulus cards in each deck were partitioned into four
sets of three stimuli per set. Each set was assigned to a different one
of the four response numbers. BEach set of three stimuli in the experi-
ment had one of the following three structures: (l) all three stimuli-
shared exactly cne common component word, (2) two of the three stimuli
shared a common component word, and (3) nore of the stimuli shared a
component word. Denote these three structures by 05, 02, and CO,
respectively. With the exception of the overlap components possible in

a C or 02 structure, all other components for a particular deck were

5

unique, i.e., appeared only on a single stimulus.
Deck (list) one consisted of animal names as the components, e.g.

toad, mole, badger, and consisted of 2 05 and 2 CO sets. Lists two

and three had the following structure. One of the lists had a 2 05,

1 C 1 C,. structure, and the other list had a 1 05, 2 02, 1 CO

2’ 0
structure. The compounents for a particular one of these lists were either
all common, short, boys' first names, e.g., Jim, BEill, Dick, or common,

short, girls' first names, e.g., Patty, Ann, Margie. Each of the two orders

for presenting the two lists was given to half the §Ssa
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Procedure.--BEach S received training trials on each of the three
lists. Presentation was by the paired-associate anticipsation method.
The inter-item interval was short, with a mean of about 1 sec. (range
about -5 to 1.5 sec.). The break between cynzles (randomizations) was
noticeable and about 5 sec., and the break between lists was about 2
minutes. For the first list, Ss were run either to a criterion of one
errorless cycle through the list or 8 complete cycles ~-- whichever occurred
first; however, for lists II and III, they were run t2 a criterion of
two errorless cycles. Upon the presentation of a particular stimulus
card, the S, at his leisure, gave orally one of the four number re-
sponses; immediately thereafter the E told him the correct number for
that stimulus.

The arrangement of components on a card was counterbalanced, both
for a single S and from S to 8. Within a given cycle through the
list, an overlap component never appeared twice in the same position (this
was accomplished by having three randomizations of each list available
to the E). Finally, to further minimize recognition of the overlap
components, presentation orders were arranged in such a way that two
stimuli sharing a common component never appeared adjacent in a cycle.
Ss were given brief paired-associate instructions and were told that
the spatial arrangement of a particular set of compounent words on a card
might change from cycle to cycle. Following the third list the S was
given a paper and pencil task to see how many of the component-number
pairings he could remember. The S5 was required to fill & respouse

number in the blank opposite each component word.
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Results and Discussion

This section will present results for List I (2 C5 and 2 C,

first, followed by the analysis of Lists II and III. The major results

sets)

for List I cun e seen from a P-level analysls of the data using some
of the statistics discussed in Chapter 2 (see pp. 16-18). By way of
preview, these statilstics are as follows: (l) the learning curve,

Pr(xn =1); (2) the mean +otal errors, E(T), and the mean trial number
of the last error, E(L); and the probability distributions of these two
statistics; and (3) the probability of an error prior to the last error,
Pr(xn = llL > n), and the probability of an error glven error curve,
Pr(xn_rl = llxn = 1). These three classes of statisties are presented for
the 05 stimulus sets and C, stimulus sets separately. Figure 6.1
presents Pr(xn = 1), Table 6.1 presents E(T) and E(L), Fig. 6.2
presents the distributions of T and L; and Figs. 6.3, 6.4 present
Pr(xn+l = l[xn =1) and Pr(xn = 1|L > n). It should be reiterated that
these statistles are computed for a P-level analysis.

Filrst, it 1s quite evident from the learning curve (Fig. 6.1) and
from the mean total errors and mean trial number of the last error (Table
6.1) that C5 stimuli (stimuli with an overlap component) were learned
more rapldly than CO stimuli. Also, there 1s evidence that the process
governing C3 learning produced qualitatively different data from the
data for C,. In Fig. 6.1, the 05 learning curve is not badly fit by
an exponential function; however, tne learning curve for CO stimull is
more S~shaped. This difference could reflect the fact that Ss  learned

to recognize and attend to the overlap components to the detriment oi

stimuli in CO sets not having these components. A qualiltative difference
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in the data for C3 and CO is also seen in the total error and trial
number of the last error distributions (Fig. 6.2). The 05 distribution
appears somewhat geometric, although limited data prevent a sharp reso-

lution of this point. On the other hwund, the C distributions are

0
definitely not geometric.

Thus far, it appears that for TO we can reject the one-element
P or R level model and also the all-or-none multi-level model, since
these models all prediet exponential learning curves and geometric T
and I distributions for the P-level of dsta analysis (see Tables 2.1
and 3.2, p. 18 and p. 39 , respectively). Moreover, the Pr(xn = 1|L > n)

and Pr(x = llxn = 1) curves (Figs. 6.3 and 6.4) make it unlikely

n+l
that any of these three models could account for C3 dats. Both curves
tend to decrease over trials, whereas all three models predict that they
should »e flat. Thus, it appears that processes more complicated than
all-or-none P and B level mechanisms are needed to account for the
data from List I.

The picture becomes more complicated in iight of the R~level
analyses- Wone of these analyses (which will not be given in detail here)
revealed anything approaching a signifieant tendency for R-level learne
ing (in the sense of Chapter 2) for C3 stimuli. The R-level learning
curve was essentially flat within a cycle and the P-level error-success
protocols for C3 showed no notable intercorrelations (see p £C and
p. 21, Chapter 2). This lack of R-level learning could be reflccted
in the rapid learning of 63 stimuli. Thus the § might not have had
o chance before reaching eriterion to manifest signifiecunt transfer

effects by these analyses. However, the differerce in learaing rate of
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C3 and C. stimuli strongly indicotes that the overlap components were

0]
effective in cutting down errors to C3 stimuli.

Iis* T was designed as a warm-up task for Lists T and III. It
was hoped that the S would have a falr idea of the structure of the
stimulus classes after his enccunter with List I, and wr 'd therefore
perform in a stable fashion on Lists II and III., Next, we move to an
anelysis of these two lists.,

Apparently there was no significant differcence in the learning
rate between Idsts II and III (the numbers refer to the List the S saw
2nd) 5rd; the two lists are discussed on p. 121). Nor was there any
tendency to learn the list having structure 2 05, 1l 02, 1l Co any
faster or slower than tae 1 05, 2 Ca, 1 Co list. There was, how-
ever, a slight tendency to learn stimuli with boys'names as components
slightly slower than stimuli with girls' names. Sinece the component type
was randomized both for list order and list type, the data from Lists II
and III were combined for analysis despite this slight differential learn=-
ing rate on component type. All 05 stimuli, all 02 stimulil sharing a
component (i.e., Cg stimuli), all C2 stimuli with all unique compcnents
(.., €, stimuli), and all C

2 0
for o P-level analysis. These classes had 135, 90, 45, and 90 protocols

stimuli were pooled into four classes

in each class, respectively.

The P-level learning curves for the four classes are presented in
Fig. 6.5 and the mean total errors and mean trial mmber of the last
error are presented in Table 6.,2. Finally, the distribution of the total
error statistic is presented in Fig. 6.6. Learning was so rapid for Lists

IT and IIT that Pr(x, = 1|L >n) and Pr(x , = lx = 1) were not

+1
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Table 6.2. Mean Total Brrors, E(T), and

Mean Trial Number of last Error, B(L),

+ - e ‘
for Cs, Cyy Cpy and Cy (Lists II and III).
e -
Cs C, C, Co
E(T) 1.21 1.30 1.84 1.62
E(L) 1.46 1.62 2.22 2.07
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sufficiently stable to warrant their inclusion. Other things being equal,
these two statistics tended to decrease over trials.

The learning curve analysis (Fig. 6.5) reveals at least two things.
First, stimuli with overlap components were learned significantly faster
thar stimuli without these components. Second, learning was very rapid
in the experiment with only about 15% or less errors per trial on and.
beyond trial 3. Closer analysis reveals that the 05 and CZ curves
drop faster than an exponential function dwring early trials. This can
be seen since the first decrement in the error probability was greater
than 50%, whereas later decrements tended to be less than 50%. The CO
and C; curves are more closely approximated by an exponential function.
Tt seems possible that the overlap components were both identified and
pair=d with responses on the first cycle, whereas they were already iden-
tified for later cycles and possibly ignored by some Ss. Interviews
did indicate some conscious ignoring of overlap components by some Ss.
A section of the R-level learning curve to follow (Fig. 6.7) bears on
this recognition and pairing hypothesis.

The fact that learning was quite rapid for these two 12~item lists
is even more strikingly seen in Table 6.2. The mean total errors for
each class was less than two. The total error distributions in Fig. 6.6
reveal that, in each of the four cases, geometric~like distributions are
obtained; however, rapid learning and small N make it difficult to
diseriminate between a geometric distribution and one that just drops as
k increases. These distributions reveal the differential difficulty in

C, and CZ VS, CO and C. classes. The fact that Pr(T = 0) 1is

5

greater for 05 than for C. might indicate more transfer from stimulus

N+ M1

133




to stimulus during cycle 1 when three stimuli share a common component &s
opposed to just two. This transfer within cyecle 1 is illustrated in the
R-level learning curve to be presented later (Fig. 6.7).

A comparison of the overlap classes and non-overlap classes (C5, 02

vs. C C;) both on their total error distributions (Fig. 6.6) and their

O)
learning curves (Fig. 6.5) indicate the nature of the learning-to-learn
effects developed in the experiment. The List I data indicate that trial
1 had little direet effect on CO stimuli, whereas trial 1 had the big-
gest effect on cutting down errors to CO stimuli for Lists II and III.

Also, the CO total error distribution is definitely not geometric fdr
List I and apparently geometric-like for Lists II and III. These differ-
ences are attributed to the ‘§s' incressed familiarity with the paradigm
for Liste II and III, i.e., the § lesrred to expect some but not all
overlap components and to use them. The post-list III recall task indi-
cated that Ss remembered the component response pairing for 85% of the
overlap (relevant) components zud only about 55% of the irrelevant com~
ponents (corrected for guessing). 3ince it was necessary to learn &
minimum of 18% of the irrelevant components to master the iist, this
measure indiecates that not too much learning above the minimum necessary
took place,

Another difference between Lists I vs, II and III i¢ revealed by
the R-level analysis. The small aumber of Ss and Jew errors prohibit a

full R-level wnalysis; however, there were significantly fewer errors

made to the Brd arrearing C5 stimulus : cyele 1 than were made to the
st

and End srtimulus in a 05 cluss. Thie fact is shown in Fig. 6.7,

which presents ' section of the R-level learning curve corresponding to
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the fi?st two cycles for 05 stimuli. The large drop from R-trial 2
to R-trial 3, without such a drop from trials 1 to 2, is strongly sug-
gestive of the fact that Ss only recognize the common component on its
second appearance and then hook the response to it on that trial. Other
R-level analyses, including the correlation of P-level protocols (see

p. 21), revealed no additional significant tendencies for R-level learn-
ing.

In conclusion, we have seen that a single overlap component C3ah .
result in a highly significant tendency for stimuli sharing thzt compo-
nent to be learned faster. Also, ws have seen that the way in which
common components are utilized. changes across successive lists; however,
the simple all-or-none ideas discussed in Chapters 2 and 5 prove unable
to account for the pattern of results on any of the lists- Finally, a
portion of the R-level analyeis helped reveal the nature of the process
explaining the results shown in the P-level analysis. In the hope of
obtaining more errors, while still retaining the general overlap paradigm
presented in this chapter, Txperiment II was performed to illuminate the

neture of the overlap faeilitative effect discussed in Experiment I.
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Experiment II
Method

The design and procedure for Experiment II was essentially the same

one subjects were run. The data from one S was excluded, since she
thought that she was supposed to write down the S-R palrs as they
appeared (she was a native German and had a 'imited mastery of English).

T first list had a 2 C 2 C. structure (just as the first list of

|
|
|
|
l as that for Experiment I, except for the followir~ .ouifications. Twenty-
|
|
3’ 0

} Experiment I); however, boys' first names were used as the components
'2 instead of animal names.

The major departure from Experiment I was to make the second two
% lists have 16 stimuli each. The stimuli were partitioned into 4 sets of
i L stimuli, and each set had the same structure. The structure for all
! sets of 4 stimuli was that 3 of the 4 stimull shared a single common com-

ponent, whereas the hth consisted of all unique components and provided

a cort 1 for the learning of the three with an overlap component. Denote

= ) .' L]

j by 05 the three stimull which shared a component and by C5 the single
- stimulus with all unique components. Finally, the components for Lists
j II and III were either animal names or names of common American cities,
} i.e., a random one of these two lists would have animal name components

and the other one names of cities as the components.
i Tt was hoped that, by increasing the list length from 12 to 16 and
” using the more difficult (established by a pilot study) city and animal
names, learning would be retarded. In retrospect, this hope was only

partially justified.
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Results and Discussion

As was expected, the data from List I were very similar to the data
from List I of the preceding experiment. This was antlcipated, because
both lists had a 2 C5’ 2 CO structure. The single important differ-
ence (which was expect.d) was that List I for this experiment pro-ed
easier than List I from the preceding experiment. No comprehensive
analysis of the data from this list is presented here; the reader is
referred to the discussion of List I for Experiment I for the major
qualitative features of the data- The learning curve for this list,
however, is presented in Fig. 6.8. Figure 6.8 is similar to the learning
curve for List I (Experiment I) in Fig. 6.1; however, it is not quite so
S-shaped, Next, we move to the analysis of lists II and III.

Unfortunately, there was still a learning-to-learn effect from
List II to List III, and therefore their analysis will be carried out
separately. This difference was not antilcipated, since it did not occur
measurably from List II to List III in the preceding experiment. Perhaps
it can be attributed in part to the similarities in structure of Lists
TT and IILI. Also, the fact that the lists were longer, and hence the S
got more experience from List 1I, and the fact ‘hat the warm-up task was
easier with consequently less experience prior to List IT, might have
contributed to this learning-to-learun effect Even with this necessary
separation in analyses, there were 240 C; and 80 Cé P-level protocols

for each list.

The learning curves for List I and List II are presented in Flg. 6,9,

the mean total errors and mean trial number of last error in Table 6.3,

the distributions of T and L 1u Figs. 6-10 and 6-11, respectively, and

138

3
LI

L3 N - ®
»
.., v | ——

o




Pr(xn =1)

o N ©

n

= o oW B

Trials n

Fig. 6.8. P-level Learning Curve for Cq and 05 for
List I (Bxp. II).

139




Pr(xn =1)

=1)

o
L
el
o.

.8
7}
.6
5
.4
.3
.2
.1
.0
Trials n
.8
.7
6 e C; I
5 e c}j il
AF
\\

.3k \

\
2F

L Y

o ‘-
o e

'Y 4 'y 1
1 2 3 4 5 6 7

Trials n
Fig. 6.9 P-level Learning Curves for ¢, aud C?:,
Lists 1I, LTI (Fxp 1IL)

140




Table 6.3. Mean Total Errors, E(T), and

Mean Trial Number of Iast Error, E(L),

for c;, c; and Lists IT, III.
List E(T) E(L)
II c;’ ' 1.38 1.79 |
II c; 1.87 2.67
IIT C; 0.9% 1.19
III c% L .90 2.33%
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Pr(xn = 1|L > n) in Table 6.4, and Pr(x 4 =1x = 1) in Table 6.5.
Tt should be emphasized that these statistics are for a P-level analysis
of the data from Lists II and III.

The learning curves in Fig. 6.9 show that learning was much faster

-
om

for C; stimuli than for 05 stimuli. Also, the curves for Lists II

+

and IIT demonstrate a fairly striking learning-to-learn effect for C3
e

stimuli, i.e., C, stimuli in List III were learned much more rapidly

3
than they were in List II(; Neither the two C- nor the List IIT Cn

3 5
learning curves are exponerdtial in shape. The C; curves take about
equal drops in the error probability for the first three trials and the
List III C; curve drops much too rapidly from trial i to 2 to be approxi-
mated by an exponential function. This evidence, as weil as other evi-
dence, suggests that the data would not be fit well by a P- or R-level
one-element model or the all-or-none multi-level model, since all three
models imply an exponential P-level learning curve (see Chapter 2, p. 18
and Chapter 3, p. 39)-

Table 6.3 presents more evidence on the learning-to-learn effect
and the superiority of C; over Cg stimuli in learning rate. Much to
the writer's chagrin, the 16-item list proved remarkably easy for the
Stanford students, so it is very difficult to undertake any elaborate
protocol analyses. The E(T) column in Table 6.3 shows how few errors
were actually made to the stimuli. The T distributions in Figo 6,10
reveal geometric-like distributions; however, the L distributions in
Fig. 6.11 seem not to be geometric. Finally, the strongest indicator

that a model with more than a siungle stage all-or-none feature is needed

to account for these data is seen in the tendency for Pr(xn+1 = l[xn =1)

1l
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Teble 6.4, Pr(x_=1|L>n) for c;, ¢y end Lists II, TT1.

List 1 2 3 L

] IT c; .65 .69 .59 59"
- x

] I C4 .63 .72 .55 -

IIT c; .6l 16 .38 -
.{ 5 -

ol .80 i 67 1 -

Table 6 Pr( = 1ls_ = 1) r oo i o
e 6.5. Pr(x 4 =1|s = for Cg, Cy and Lists II, IIL.

Trials, n
List 1 2 3 L
IT c; .38 146 .31 .21
II 5| .5 | 45 40 28"
+ *
III G| .22 .21 .21 -
TIT c; 49 .28 18" -

*¥ means two adjacent trials pooled.

*¥% computations were made only if the number of
cases was greater than 30.
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to decrease with trials in Table 6.5.

Evidence for R-level learning comes from a plot of the R-level
learning curve. This curve is presented in Fig. 6.12. The List II R-level
learning curve shows only a slight tendency to decline within a cycle.
to decrease

Any significant tendency for  Pr(srror on R-trizi N)

within a cycle for C stimuli can be interpreted as positive transfer

5
to items within the class. This within-cycle decline in Pr(xN =1) is
more strikingly demonstrated in the R-level learning curve for List III.
The N=2 to N =3 decrease in Pr(xN = 1) 1s especially noticeable.
In both Lists II and III, the larger jumps in Pr(xN = 1) +take place
between cycles. These jumps are thought to reflect both R-level and
P-level learning, whereas the within-cycle jumps merely reflect R-level
learning. Unfortunately, there are not enough errors to warrant a fur-
ther R-level analysis.,

In conclusion, these experiments have shown how some of the analy-
ses discussed in Chapter 2 can be used to infer properties of data when
multi-level learning is presumed to take place. Although the effect of
overlap components in learaing rate is striking, the general lack of
many errors by the Ss prohibited a detalled R-level analysis which might
have revealed the nature of this overlap facilitation. Also, it was
hoped that the all-or-none multi-level model would give a fair account-
ing of the data in Lists II and IIIL. This hope failed to materialize.
Since it is not the purpose of this paper to attempt post hoc model fits
to data, no effort was made to plece together a workable model for the
results. Such a model would no doubt have to involve more than one stage,

because the Pr(x =1|x =1) and Pr(x_ = 1|L >n) curves decreased
n+l n n
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over trials. Also, intuition and subject interviews indicate that sub-
jects learn to recognize overlap components before hooking responses to
them, suggesting at least one additional stage- In the future, an effort
will be made to find more difficult materials where overlap components do
not stand out but are leurned just as any other component with, perhaps,
more "unconscious" positvive transfer. Then a multi-level model, such as
the all-or-none multi-level model, might give a better account of the
data.

In addition, a program of research in which differeut presentation
schedules for the same list are used is contemplated. It is hoped that
a multi-level model written ir terms of the framework in Chepter 4 can
be tested by derivations from (éf,ngif) under various presentation
schedules. The aim of this raesearch will be to show that a valid model
for paired-associste learning can be represented in.a general enough way
to allow for testing on various levels of data analysis as well as for
different presentation schedules. It is hoped that by this line of re-~
search the ideas embodied 1in various extant models for P-level analyses
of paired-associate learning by the anticipation procedure carn be eleva~-
ted to the status of a general paired-associate theory capable of meking

contact with date in a variety of different experimental paradigms. If

this paper has contributed in any way tO narrowing the apparent conceptual

gap between the carefully designed simple list~learning studies of math-
ematical learning theorists and the more complex multi-factored processes
studied by the more traditional schools of verbal learuning, theu it will

have served its purpose.
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APPENDIX I

This appendix presents selected derivations for statistics presen-
ted in Tebles 2.1, 2.2, and 3.2, Not all expressions in these tables
will be derived, but the hope is to convey the idea of how the multi-

level derivations were made.

For Table 2.1

A) Pr(xn=l) for the (P,R) analysis.

Since the item can appear in any of the M positions on its nth

cycle, the result is
M(n-l) o 1 kel
(I.1) P:r'(xn=l) = (l-c) > -M(l-g)(l-c)
k=1
1

= (l”g)[l‘j&;(l-C)M] [ (l-c)M]n-

B) Pr(xn+l=l|xn=l) for the (P,R) analysis.
Pr(x_=1|x_, ,=1)Pr(x__,.=L)
(1.2) Pr(x_..|x =1) = — 2 0 ntl
n+l'"n Pr(xn=l)

= (1-g)(1-c) .

c) Pr(T=0) for the (P,R) anelysis.

Let A, be the position of the item on cyele 1, i=l,2, ... , M.

i

M
(z.3) Pr(T=0) = ;;& Pr(T=0|4,)Pr(4,) .

Pr(Ai) = % and we can get Pr(T=O|Ai) in terms of 1 and Pr(T=0)

as follows:
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(T.4) Pr(T=0]4,) = [1-(1-c) 21T + (1-e)tt gl[1-(1-c)1*E

& (Loo)t-itl

Pr(T=0)} .

Substituting (I.k) into (I.3) and summing yields

L (e[ (ime)"]
Mc[lwg(lwc)MT

(I.4) Pr(T=0)

il

L. (1-e)b
Me ¢

where b has been substituted from Izbie 2.1, Pr(T=k) is computed in

a simlilar menner.

For Table 2,2

A) Pr(xN = 1) for the (R,P) sanalysis,

Since knowing the R~trial allows us to find the cycle nymber, K(W),

we have
(1.6) Pr(xg=l) = (L-g)(1-e)T)1
B) Pr(xN+l=llxN;l) for the (R,P) analysis.

The only difficulty in this corputation 1s in noting that there
are two cases. Ip the first case the item is not the last in a cycle,
and hence, the NHLSU eppear ing item 1s some other item thsn the Ntho
Tn the second case the item is the last in & eycle and may or may not be
the NH5Y item,

The derivations thst were rumbersome or not presented involve work-

ing with the maximum of a sequence of M ‘random var iables,
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For Table 3.2

Derivations for the P-level are very similar to those of Table 2.1,
except more cumbersome. The only difference is that on R-trials when the
item appears (l-p-r) is the probability that that item remains unlearned,
whereas when other items appear, the probability is (l-r). To illustrate,
consider the learning curve. Let Ak,n be the event of the item appear-

ing in position k on cycle n, k =1,2, «ve , M and n=1,2, ... .

1 M
Prie,=t) = 2 Prle=tlh )

M n-1
§ L [T @) (o)
=1

=

M n-1
(1o 1eQr) ] f (3 pr) (1)

The two derivations presented for the R-level analysis are very
similar to those of Table 2.2, except that during a cycle the R-level
process operates. To illustrate, consider the learning curve. Since the
cyele number, K(N), associated with R-trial N is easily computed, we

have

- - (1. _ N-1 le=r-
Pr(agl) = (18" (G
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